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The climate system is a forced, dissipative, nonlinear, complex and heterogeneous system
that is out of thermodynamic equilibrium. The system exhibits natural variability on
many scales of motion, in time as well as space, and it is subject to various external
forcings, natural as well as anthropogenic. This paper reviews the observational evidence
on climate phenomena and the governing equations of planetary-scale flow, as well as
presenting the key concept of a hierarchy of models as used in the climate sciences.
Recent advances in the application of dynamical systems theory, on the one hand, and
of nonequilibrium statistical physics, on the other, are brought together for the first time
and shown to complement each other in helping understand and predict the system’s
behavior. These complementary points of view permit a self-consistent handling of
subgrid-scale phenomena as stochastic processes, as well as a unified handling of natural
climate variability and forced climate change, along with a treatment of the crucial issues
of climate sensitivity, response, and predictability.
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I. INTRODUCTION AND MOTIVATION

A. Basic Facts of the Climate Sciences

The climate system is a forced, dissipative, chaotic sys-
tem that is out of equilibrium and whose complex natural
variability arises from the interplay of positive and neg-
ative feedbacks, instabilities and saturation mechanisms.
These processes span a broad range of spatial and tempo-
ral scales and include many chemical species and all phys-
ical phases. The system’s heterogeneous phenomenol-
ogy includes the mycrophysics of clouds, cloud–radiation
interactions, atmospheric and oceanic boundary layers,
and several scales of turbulence (Ghil, 2019); it evolves,
furthermore, under the action of large-scale agents that
drive and modulate its evolution, mainly differential solar
heating and the Earth’s rotation and gravitation.

As is often the case, the complexity of the physics is
interwoven with the chaotic character of the dynamics.
Moreover, the climate system’s large natural variability
on different time scales is strongly affected by relatively
small changes in the forcing, anthropogenic as well as

FIG. 1: Globally averaged energy fluxes in the Earth
system [W m−2]. The fluxes on the left represent solar
radiation in the visible and the ultraviolet, those on the

right terrestrial radiation in the infrared, and those in the
middle nonradiative fluxes. Reproduced from Trenberth

et al. (2009) c©American Meteorological Society; used with
permission.

natural (Ghil and Childress, 1987; Lucarini et al., 2014;
Peixoto and Oort, 1992)

On the macroscopic level, climate is driven by differ-
ences in the absorption of solar radiation throughout the
depth of the atmosphere, as well as in a narrow surface
layer of the ocean and of the soil; the system’s actual
governing equations are given in Sect. II.C below. The
prevalence of absorption at the surface and in the at-
mosphere’s lower levels leads, through several processes,
to compensating vertical energy fluxes — most notably,
fluxes of infrared radiation throughout the atmosphere
and convective motions in the troposphere; see Fig. 1.

More solar radiation is absorbed in the low latitudes,
leading to horizontal energy fluxes as well. The atmo-
sphere’s large-scale circulation is, to first order, a result
of these horizontal and vertical fluxes arising from the
gradients in solar radiation absorption, in which the hy-
drological cycle plays a key role as well. The ocean cir-
culation, in turn, is set into motion by surface or near-
surface exchanges of mass, momentum and energy with
the atmosphere: the so-called wind-driven component of
the circulation is due mainly to the wind stress and the
thermohaline one is due mainly to buoyancy fluxes (Dijk-
stra, 2005; Dijkstra and Ghil, 2005). The coupled atmo-
spheric and oceanic circulation reduces the temperature
differences between tropics and polar regions with respect
to that on an otherwise similar planet with no horizon-
tal energy transfers (Held, 2001; Lorenz, 1967; Lucarini
and Ragone, 2011; Peixoto and Oort, 1992). At steady
state, the convergence of enthalpy transported by the at-
mosphere and by the oceans compensates the radiative
imbalance at the top of the atmosphere; see Fig. 2.

The classical theory of the general circulation of the at-
mosphere (Lorenz, 1967) describes in further detail how
the mechanisms of energy generation, conversion and dis-
sipation produce the observed circulation, which deviates
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substantially from the highly idealized, zonally symmet-
ric picture sketched so far. According to Lorenz (1955),
atmospheric large-scale flows result from the conversion
of available potential energy — which is produced by
the atmosphere’s differential heating — into kinetic en-
ergy, and the Lorenz (1967) energy cycle is completed
by energy cascading to smaller scales to be eventually
dissipated. McWilliams (2019) provides an up-to-date
criticism of and further perspective on this theory.

Overall, the climate system can be seen as a ther-
mal engine capable of transforming radiative heat into
mechanical energy with a given, highly suboptimal
efficiency, given the many irreversible processes that
make it less than ideal (Kleidon and Lorenz, 2005; Lu-
carini, 2009b; Lucarini et al., 2014; Pauluis and Held,
2002). This conversion occurs through genuinely three-
dimensional (3-D) baroclinic instabilities (Charney, 1947;
Eady, 1949) that are triggered by large temperature gra-
dients and would break zonal symmetry even on a so-
called aqua-planet, with no topographic or thermal asym-
metries at its surface. These instabilities give rise to a
negative feedback, as they tend to reduce the temper-
ature gradients they feed upon by favoring the mixing
between masses of fluids at different temperatures.

Note that, while these baroclinic and other large-scale
instabilities do act as negative feedbacks, they cannot be
treated as diffusive, Onsager (1931)-like processes. Faced
with the Earth system’s complexity discussed herein and
illustrated by Fig. 3, the closure of the coupled thermody-
namical equations governing the general circulation of the
atmosphere and oceans would provide a self-consistent
theory of climate. Such a theory should able to con-
nect instabilities and large-scale stabilizing processes on
longer spatial and temporal scales, and to predict its re-
sponse to a variety of forcings, both natural and anthro-
pogenic (Ghil, 2015; Ghil and Childress, 1987; Lucarini,
2009b; Lucarini et al., 2014). This goal is being actively
pursued but is still out of reach at the time of this writing
(e.g., Ghil, 2019, and references); see also Sects. IV and
V herein. The observed persistence of spatial gradients in
chemical concentrations and temperatures, as well as the
associated mass and energy fluxes, are a basic signature
of the climate system’s intrinsic disequilibrium.

Figure 3 emphasizes, moreover, that the fluid and the
solid parts of the Earth system are coupled on even longer
time scales, on which geochemical processes become of
paramount importance (Kleidon, 2009; Rothman et al.,
2003). In contrast, closed, isolated systems cannot main-
tain disequilibrium and have to evolve towards homoge-
nous thermodynamical equilibrium, as a result of the sec-
ond law of thermodynamics (Prigogine, 1961).

Studying the climate system’s entropy budget provides
a good global perspective on this system. The Earth
as a whole absorbs shortwave radiation carried by low-
entropy solar photons at TSun ' 6000 K and emits in-
frared radiation to space via high-entropy thermal pho-

(a) Net radiative fluxes

(b) Inferred horizontal fluxes

FIG. 2: Meridional distribution of net radiative fluxes and
of horizontal enthalpy fluxes. (a) Observed zonally averaged
radiative imbalance at the top of the atmosphere from the

ERBE experiment (1985–1989). (b) Inferred meridional
enthalpy transport from ERBE observations (solid line) and

estimate of the atmospheric enthalpy transport from two
reanalysis datasets (ECMWF and NCEP). Reproduced from

Trenberth and Caron (2001) c©American Meteorological
Society; used with permission.

tons at TEarth ' 255 K (Lucarini et al., 2014; Peixoto and
Oort, 1992). Besides the viscous dissipation of kinetic en-
ergy, many other irreversible processes—such as turbu-
lent diffusion of heat and chemical species, irreversible
phase transitions associated with various hydrological
processes, and chemical reactions involved in the biogeo-
chemistry of the planet—contribute to the total material
entropy production (Goody, 2000; Kleidon, 2009).

These and other important processes appear in the
schematic diagram of Fig. 3. In general, in a forced dissi-
pative system, entropy is continuously produced by irre-
versible processes and at steady state, this production is
balanced by a net outgoing flux of entropy at the system’s
boundaries (de Groot and Mazur, 1984; Prigogine, 1961);
in the case at hand, this flux leaves mainly through the
top of the atmosphere (Goody, 2000; Lucarini, 2009b).
Thus, on average, the climate system’s entropy budget is
balanced, just like its energy budget.
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The phenomenology of the climate system is commonly
approached by focusing on distinct and complementary
aspects that include:

• wave-like features such as Rossby waves or equato-
rially trapped waves (e.g., Gill, 1982), which play a
key role in the transport of energy, momentum, and
water vapor, as well as in the study of atmospheric,
oceanic and coupled-system predictability;

• particle-like features such as hurricanes, extratrop-
ical cyclones or oceanic vortices (e.g., McWilliams,
2019; Salmon, 1998), which strongly affect the local
properties of the climate system and of its subsys-
tems and subdomains;

• turbulent cascades, which are of crucial impor-
tance in the development of large eddies through
the mechanism of geostrophic turbulence (Charney,
1971), as well as in mixing and dissipation within
the planetary boundary layer (Zilitinkevich, 1975).

Each of these points of view is useful and they do over-
lap and complement each other (Ghil and Robertson,
2002; Lucarini et al., 2014) but neither by itself provides
a comprehensive understanding of the properties of the
climate system. It is a key objective of this review paper
to provide the interested and motivated reader with the
tools for achieving such a comprehensive understanding
with predictive potential.

FIG. 3: Schematic diagram representing forcings, dissipative
and mixing processes, gradients of temperature and chemical
species, and coupling mechanisms across the Earth system.

Bluish (reddish) colors refer to the fluid (solid) Earth.
Reproduced from Kleidon (2010) with permission.

While much progress has been achieved (Ghil, 2019),
understanding and predicting the dynamics of the cli-

mate system faces — on top of all the difficulties that are
intrinsic to any nonlinear, complex system out of equi-
librium — the following additional obstacles that make
it especially hard to grasp fully:

• the presence of well-defined subsystems — the at-
mosphere, the oceans, the cryosphere — character-
ized by distinct physical and chemical properties
and widely differing time and space scales;

• the complex processes coupling these subsystems;

• the continuously varying set of forcings that re-
sult from fluctuations in the incoming solar radia-
tion and in the processes, both natural and anthro-
pogenic, that alter the atmospheric composition;

• the lack of scale separation between different pro-
cesses, which requires a profound revision of the
standard methods for model reduction, and calls for
unavoidably complex parametrization of subgrid-
scale processes in numerical models;

• the lack of detailed, homogeneous, high-resolution
and long-lasting observations of climatic fields that
leads to the need for combining direct and indirect
measurements when trying to reconstruct past cli-
mate states preceding the industrial era; and, last
but not least,

• the fact that we only have one realization of the
processes that give rise to climate evolution in time.

For all these reasons, it is far from trivial to separate
the climate system’s response to various forcings from its
natural variability in the absence of time-dependent forc-
ings. In simpler words, and as noted already by Lorenz
(1979), it is hard to separate forced and free climatic fluc-
tuations (Lucarini et al., 2014, 2017; Lucarini and Sarno,
2011). This difficulty is a major stumbling block on the
road to a unified theory of climate evolution (Ghil, 2015,
2017) but some promising ideas for overcoming it are
emerging and will be addressed in Sects. IV and V herein;
see also Ghil (2019).

B. More Than “Just” Science

1. The Intergovernmental Panel on Climate Change

Besides the strictly scientific aspects of climate re-
search, much of the recent interest in it has been driven
by the accumulated observational and modeling evidence
on the ways humans influence the climate system. In or-
der to review and coordinate the research activities car-
ried out by the scientific community in this respect, the
United Nations Environment Programme (UNEP) and
the World Meteorological Organization (WMO) estab-
lished in 1988 the Intergovernmental Panel on Climate
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Change (IPCC); its assessments reports (ARs) are is-
sued every 4–6 years. By compiling systematic reviews
of the scientific literature relevant to climate change, the
ARs summarize the scientific progress, the open ques-
tions, and the bottlenecks regarding our ability to ob-
serve, model, understand and predict the climate sys-
tem’s evolution.

More specifically, it is the IPCC Working Group I that
focuses on the physical basis of climate change; see IPCC
(2001, 2007, 2014a) for the three latest reports — AR3,
AR4 and AR5 — in this area. Working Groups II and III
are responsible for the reports that cover the advances in
the interdisciplinary areas of adapting to climate change
and of mitigating its impacts; see IPCC (2014b,c) for the
contributions of Working Groups II and III, respectively,
to AR5. AR6 is currently in preparation, cf. https:

//www.ipcc.ch/assessment-report/ar6/.
Moreover, the IPCC supports the preparation of spe-

cial reports on themes which are of interest across two
of the working groups, e.g. climatic extremes (IPCC,
2012), or across all three of them. The IPCC experience
and working group structure is being replicated for ad-
dressing climate change at regional level, as in the case
for the Hindu Kush Himalaya region, called sometimes
the “third pole” (Wester et al., 2019).

The IPCC reports are based on the best science avail-
able and are policy-relevant but not policy-prescriptive.
Their multi-stage review is supposed to guarantee
neutrality but they are still inherently official, UN-
sanctioned documents and have to bear the imprimatur
of the IPCC’s 195 member countries. Their release thus
leads to considerable and often adversarial debates in-
volving a variety of stakeholders from science, politics,
civil society, and business; they also affect media pro-
duction, cinema, videogames, and art at large, and are
reflected more and more by them.

Climate change has thus become an increasingly cen-
tral topic of discussion in the public arena, involving
all levels of decision making from local through regional
and on to global. In recent years, climate services have
emerged as a new area at the intersection of science,
technology, policy making and business. They empha-
size tools to enable climate change adaptation and mit-
igation strategies, and have benefited from large public
investments like the European Union’s Copernicus Pro-
gramme, https://climate.copernicus.eu.

The lack of substantial progress in national govern-
ments’ and international bodies’ tackling climate change
has recently led to the rapid growth of global, young-
people–driven grassroot movements like Extinction Re-
bellion, https://rebellion.earth/, and FridaysFor-
Future, https://www.fridaysforfuture.org. Some
countries, like the United Kingdom, have declared a
state of climate emergency, cf. https://www.bbc.co.uk/
news/uk-politics-48126677, and some influential me-
dia outlets have started to use the expression climate

crisis instead of climate change, https://tinyurl.com/
y2v2jwzy. While of great consequence, the present pa-
per does not further dwell on such socio-economic and
political issues.

2. Hockey Stick Controversy and Climate Blogs

Mann et al. (1999, Fig. 3(a)) produced a tempera-
ture reconstruction from proxy data, cf. Sect. II.A,
for the last 1000 yr, shown as part of the blue curve in
Fig. 4. This curve was arguably the most striking, and
hence controversial, scientific result contained in AR3
(IPCC, 2001) and it was dubbed, for obvious reasons,
the hockey stick. The AR3 report combined into one
figure — Fig. 1(b) of the Summary for Policy Makers
(SPM) — this blue curve and the red curve shown in
Fig. 4 here, which was based on instrumental data over
the last century-and-one-half; see Fig. 1(a) of the SPM.
This superposition purported to demonstrate that recent
temperature increase was unprecedented over the last two
millennia, in both values attained and rate of change.

Figure 1(b) of the AR3’s SPM received an enormous
deal of attention from the social and political forces wish-
ing to underscore the urgency of tackling anthropogenic
climate change. For the opposite reasons, the paper and
its authors were the subject of intense political and ju-
dicial scrutiny and attack by other actors in the contro-
versy, claiming that the paper was both politically moti-
vated and scientifically unsound.

McIntyre and McKitrick (2005), among others,
strongly criticized the results of Mann et al. (1999),
claiming that the statistical procedures used for smoothly
combining the diverse proxy records used — including
tree rings, coral records, ice cores, and long historical
records, with their diverse sources and ranges of uncer-
tainty — into a single multiproxy record, and the latter
with instrumental records, were marred by biases and un-
derestimation of the actual statistical uncertainty. Later
papers criticized in turn the statistical methods of McIn-
tyre and McKitrick (2005) and confirmed the overall cor-
rectness of the hockey stick reconstruction (e.g., Huybers,
2005; Mann et al., 2008; PAGES, 2013; Taricco et al.,
2009). NRC (2006) provided an excellent review of the
state of our knowledge concerning the last two millennia
of climate change and variability.

This controversy included the notorious “Climategate”
incident, in which data hacked from the computer of a
well-known UK scientist were used to support the the-
sis that scientific misconduct and data falsification had
been routinely used to support the hockey stick recon-
struction. These claims were later dismissed but they
did lead to an important change in the relationship be-
tween the climate sciences, society, and politics, and in
the way climate scientists interact among themselves and
with the public. In certain countries — e.g., the UK and

https://www.ipcc.ch/assessment-report/ar6/
https://www.ipcc.ch/assessment-report/ar6/
https://climate.copernicus.eu
https://rebellion.earth/
https://www.fridaysforfuture.org
https://www.bbc.co.uk/news/uk-politics-48126677
https://www.bbc.co.uk/news/uk-politics-48126677
https://tinyurl.com/y2v2jwzy
https://tinyurl.com/y2v2jwzy
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FIG. 4: Surface air temperature record for the last two
millennia. Green dots show the 30-year average of the latest

PAGES 2k reconstruction (PAGES, 2013), while the red
curve shows the global mean temperature, according to

HadCRUT4 data from 1850 onwards; the original “hockey
stick” of Mann et al. (1999) is plotted in dark blue and its

uncertainty range in light blue. Graph by Klaus Bitterman.

the USA — stringent rules have been imposed to ascer-
tain that scientists working in governmental institutions
have to publicly reveal the data they use in the prepara-
tion of scientific work, if formally requested to do so.

Faced with the confusion generated by the
polemics, several leading scientists started blogs —
e.g., www.realclimate.org, www.ClimateAudit.org,
www.climate-lab-book.ac.uk, and judithcurry.com

— in which scientific literature and key ideas are
presented for a broader audience and debated outside
the traditional media of peer-reviewed journals or public
events, such as conferences and workshops. Most con-
tributions are of high quality, but sometimes arguments
appear to sink to the level of a bitter strife between those
in favor and those against the reality of climate change
and of the anthropogenic contribution to its causes.

C. This Review

The main purpose of this review paper is to bring to-
gether a substantial body of literature published over the
last few decades in the geosciences, as well as in math-
ematical and physical journals, and provide a compre-
hensive picture of climate dynamics. Moreover, this pic-
ture should appeal to a readership of physicists, and help
stimulate interdisciplinary research activities.

For decades meteorology and oceanography, on the one
side, and physics, on the other, have had a relatively low
level of interaction, with by-and-large separate scientific
gatherings and scholarly journals. Recent developments
in dynamical systems theory, both finite- and infinite-

dimensional, as well as in random processes and statis-
tical mechanics, have created a common language that
makes it possible, at this time, to achieve a higher level
of communication and mutual stimulation.

The key aspects of the field that we want to tackle here
are the natural variability of the climate system, the de-
terministic and random processes that contribute to this
variability, its response to perturbations, and the rela-
tions between internal and external causes of observed
changes in the system. Moreover, we will present tools
for the study of critical transitions in the climate sys-
tem, which can help understand and possibly predict the
potential for catastrophic climate change.

In Sect. II, we provide an overview for non-specialists of
the way climate researchers collect and process informa-
tion on the state of the atmosphere, the land surface, and
the oceans. Next, the relevant conservation laws and the
equations that govern climatic processes are introduced.

An important characteristic of the climate system is
the already mentioned coexistence and nonlinear inter-
action of multiple subsystems, processes and scales of
motion. This state of affairs entails two important con-
sequences that are also addressed in Sect. II. First is the
need for scale-dependent filtering: on the positive side,
this filtering leads to simplified equations; on the neg-
ative one, it calls for so-called parametrization of unre-
solved processes, i.e. for the representation of subgrid-
scale processes in terms of the resolved, larger-scale ones.
Second is the fact that no single model can encompass
all the subsystems, processes and scales, hence the need
for resorting to a hierarchy of models. The section ends
by discussing present-day standard protocols for climate
modeling and the associated problem of evaluating the
models’ performance in a coherent way.

Section III treats in greater depth climate variability.
We describe the most important modes of climate vari-
ability and provide an overview of the coexistence of sev-
eral equilibria in the climate system, and of their depen-
dence on parameter values. While the study of bifurca-
tions and exchange of stability in the climate system goes
back to the work of E. N. Lorenz, H. M. Stommel and G.
Veronis in the 1960s (e.g., Dijkstra, 2013; Ghil, 2019; Ghil
and Childress, 1987), a strikingly broadened interest in
these matters has been stimulated by the borrowing from
the social sciences of the term “tipping points” (Gladwell,
2000; Lenton et al., 2008).

Proceeding beyond multiple equilibria, we show next
how complex processes give rise to the system’s internal
variability by successive instabilities setting in, compet-
ing and eventually leading to the quintessentially chaotic
nature of the evolution of climate. This section concludes
by addressing the need for using random processes to
model the faster and smaller scales of motion in mul-
tiscale systems, and by discussing markovian and non-
markovian approximations for the representation of the
neglected degrees of freedom. We will also discuss top-
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down vs. data-driven approaches.
Section IV delves into the analysis of climate response.

The response to external forcing of a physico-chemical
system out of equilibrium is the overarching concept we
use in clarifying the mathematical and physical bases of
climate change. We critically appraise climate models
as numerical laboratories and review ways to test their
skill at simulating past and present changes, as well as at
predicting future ones. The classical concept of equilib-
rium climate sensitivity is critically presented first, and
we discuss its merits and limitations.

We present next the key concepts and methods of
nonautonomous and random dynamical systems, as a
framework for the unified understanding of intrinsic cli-
mate variability and forced climate change, and empha-
size the key role of pullback attractors in this framework.
These concepts have been introduced only quite recently
into the climate sciences, and we show how pullback at-
tractors and the associated dynamical-systems machin-
ery provide an excellent setting for studying the statisti-
cal mechanics of the climate system as an open system.

This system is subject to variations in the forcing and
in its boundary conditions on all time scales. Such varia-
tions include, on different time scales, the incoming solar
radiation, the position of the continents, and the sources
of aerosols and greenhouse gases. We further intro-
duce time-dependent invariant measures on a parameter-
dependent pullback attractor, and the Wasserstein dis-
tance between such measures, as the main ingredients for
a more geometrical treatment of climate sensitivity in the
presence of large and sudden changes in the forcings.

We then outline, in the context of non-equilibrium sta-
tistical mechanics, Ruelle’s response theory as an efficient
and flexible tool for calculating climate response to small
and moderate natural and anthropogenic forcings, and
reconstruct the properties of the pullback attractor from
a suitably defined reference background state. The re-
sponse of a system near a tipping point is studied, and
we emphasize the link between properties of the autocor-
relation of the unperturbed system and its vicinity to the
critical transition, along with their implications in terms
of tell-tale properties of associated time series.

Section V is devoted to discussing multistability in the
climate system, and the critical transitions that occur in
the vicinity of tipping points in systems possessing mul-
tiple steady states. The corresponding methodology is
then applied to the transitions between a fully frozen,
so-called snowball state of our planet and its warmer
states. These transitions have played a crucial role in
modulating the appearance of complex life forms. We
introduce the concept of an edge state, a dynamical ob-
ject that has helped explain bistability in fluid mechani-
cal systems, and argue that such states will also yield a
more complete picture of tipping points in the climatic
context. Finally, we present an example of a more exotic
chaos-to-chaos critical transition that occurs in a delay

differential equation model for the Tropical Pacific.
In Section VI, we briefly summarize this review paper’s

main ideas and introduce complementary research lines
that have not been discussed herein. Appendix A con-
tains two tables of scientific and institutional acronyms
used throughout the paper.

II. A BRIEF INTRODUCTION TO CLIMATE DYNAMICS

A. Climate Observations: Direct and Indirect

A fundamental difficulty in the climate sciences arises
from humanity’s insufficient ability to collect data of
standardized quality, with sufficient spatial detail and of
sufficient temporal coverage. Instrumental data sets have
substantial issues of both synchronic and diachronic co-
herence. Moreover, such data sets only extend, at best,
for about one-to-two centuries into the past. In this sec-
tion, we cover first instrumental data sets and then so-
called historical and proxy data sets, which use indirect
evidence on the value of meteorological observables be-
fore the industrial era.

1. Instrumental Data and Reanalyses

Since the establishment of the first meteorological sta-
tions in Europe and in North America in the 19th century,
the extent and quality of the network of observations and
the technology supporting the collection and storage of
data have rapidly evolved. Still, at any given time, the
spatial density of data changes dramatically across the
globe, with much sparser observations over the oceans
and over land areas characterized by low population den-
sity or a low degree of technological development (e.g.,
Ghil and Malanotte-Rizzoli, 1991, Fig. 1).

FIG. 5: Schematic diagram representing the evolution of

the observing network for weather and climate data. The

dotted vertical line corresponds to the International

Geophysical Year (IGY). Courtesy of Dick Dee.

Starting in the late 1960s, polar orbiting and geosta-
tionary satellites have led to a revolution in collecting
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weather, land surface and ocean surface data. Space-
borne instruments are now remotely sensing many cli-
matic variables from the most remote areas of the globe;
for instance, they measure the overall intensity and spec-
tral features of emitted infrared and reflected visible and
ultraviolet radiation, and complex algorithms relate their
raw measurements to the actual properties of the atmo-
sphere, such as temperature and cloud cover.

Figure 5 represents schematically the evolution of the
observational network for climatic data, while Fig. 6 por-
trays the instruments that today comprise the Global Ob-
serving System of the Word Meteorological Organization
(WMO), the United Nations agency that coordinates the
collection and quality check of weather and climate data
over the entire globe.

FIG. 6: An illustration of the instruments and platforms

that comprise the World Meteorological Organization’s

(WMO’s) Global Observing System (GOS). From the

COMET c© website at http://meted.ucar.edu/ of the

University Corporation for Atmospheric Research (UCAR),

sponsored in part through a cooperative agreements with

the National Oceanic and Atmospheric Administration

(NOAA), U.S. Department of Commerce (DOC).

c©1997–2016 UCAR; all rights reserved.

Since the early 20th century, the daily measurements
have grown in number by many orders of magnitude and
cover now more regularly the entire globe, even though
large swaths of the Earth still feature relatively sparse
observations. Figures 7 and 8 illustrate the coverage and
variety of the observing systems available at present to
individual researchers and practitioners, as well as to en-
vironmental and civil-protection agencies. Note that the
so-called conventional network of ground-based weather
stations and related observations has evolved since the
Global Weather Experiment in the late 1970s, cf. Fig. 1
in Bengtsson et al. (1981) but only marginally so: it is the
remote-sensing observations that have increased tremen-
dously in number, variety and quality.

The number and quality of oceanographic observations

was several orders of magnitude smaller than that of
meteorological ones in the 1980s (Ghil and Malanotte-
Rizzoli, 1991; Munk and Wunsch, 1982). Here also the
advent of space-borne altimetry for sea surface heights
(SSHs), scatterometry for surface winds, and other
remote-sensing methods has revolutionized the field (e.g.,
Robinson, 2010). This number, however, is still smaller
by at least one order of magnitude than that of atmo-
spheric observations since, as pointed out by Munk and
Wunsch (1982), the oceans’ interior is not permeable to
exploration by electromagnetic waves. This is a funda-
mental barrier hindering our ability to directly observe
the deep ocean.

Observational data for the atmosphere and oceans are
at any rate sparse, irregular, and of different degrees of
accuracy, while in many applications one has to obtain
the best estimate, with known error bars, of the state
of the atmosphere or oceans at a given time and with
a given, uniform spatial resolution. More often than
not, this estimate also needs to include meteorological,
oceanographic or coupled-system variables, such as ver-
tical wind velocity or surface heat fluxes, that can only
be observed very poorly or not at all.

The very active field of data assimilation has developed
to bridge the gap between the observations that are, typi-
cally, discrete in both time and space, and the continuum
of the atmospheric and oceanic fields. Data assimilation
— as distinct from polynomial interpolation, statistical
regression or the inverse methods used in solid-earth geo-
physics — first arose in the late 1960s from the needs of
numerical weather prediction (NWP), on the one hand,
and the appearance of time-continuous data streams from
satellites, on the other (Charney et al., 1969; Ghil et al.,
1979). NWP is, essentially an initial-value problem for
the partial differential equations (PDEs) governing large-
scale atmospheric flows (Richardson, 1922) that needed a
complete and accurate initial state every 12 or 24 hours.

Data assimilation combines partial and inaccurate ob-
servational data with a dynamic model, based on phys-
ical laws, that governs the evolution of the continuous
medium under study in order to provide the best esti-
mates of the state of the medium. This model also is
subject to errors, due to incomplete knowledge of the
smaller-scale processes, numerical discretization errors
and other factors. Given these two sources of infor-
mation, observational and physico-mathematical, there
are three types of problems that can be formulated and
solved, given measurements over a time interval {t0 ≤
t ≤ t1}: filtering, smoothing and prediction; see Fig. 9.

Filtering involves obtaining a best-possible estimate
of the state X(t) at t = t1, smoothing at all times
t0 ≤ t ≤ t1, and prediction at times t > t1. Filter-
ing and prediction are typically used in NWP, and can
be considered as the generation of short “video loops,”
while smoothing is typically used in climate studies, and
resembles the generation of long “feature movies” (Ghil
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FIG. 7: Maps of point observations from the World Meteorological Organization’s (WMO’s) Global Observing System (GOS)

on 10 April 2009: (a) synoptic weather station and ship reports; (b) upper-air station reports; (c) buoy observations; (d)

aircraft wind and temperature; (e) wind profiler reports; (f) temperature and humidity profiles from Global Positioning

System (GPS) radio occultation; and (g) observations from citizen weather observers. The tropics are the bright areas

bordered by ±30◦ latitude. From the COMET c© website at http://meted.ucar.edu/ of the University Corporation for

Atmospheric Research (UCAR), sponsored in part through cooperative agreements with the National Oceanic and

Atmospheric Administration (NOAA), U.S. Department of Commerce (DOC). c©1997-2016 UCAR; all rights reserved.

and Malanotte-Rizzoli, 1991).

Figure 10 illustrates a so-called forecast–assimilation
cycle, as used originally in NWP: at evenly spaced, pre-
selected times {tk : k = 1, 2, . . . ,K}, one obtains an
analysis of the state X(tk) by combining the observations

over some interval preceding the time tk with the forecast
from the previous state X(tk−1) (Bengtsson et al., 1981;
Kalnay, 2003). Many variations on this relatively simple
scheme have been introduced in adapting it to oceano-
graphic data (Ghil and Malanotte-Rizzoli, 1991, and ref-
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FIG. 8: Geographic distribution of observing systems: (a) geostationary satellite observations; (b) and (c) polar-orbiting

satellite soundings; (d) ocean surface scatterometer-derived winds; and (e, f) TRMM Microwave Imager (TMI) orbits. Each

color represents the coverage of a single satellite. Observations in (b) and (c) represent vertical layers and area-averaged

values. The tropics are marked by the lighter areas bordered by ±30◦ latitude. Same source as Fig. 7. c©1997-2016 UCAR;

all rights reserved.

erences therein) and to space plasmas (e.g., Merkin et al.,
2016) or to actually using the time-continuous stream of
remote-sensing data (Ghil et al., 1979).

Analyses are routinely used for numerical weather fore-
casts and take advantage of the continuous improvements
of models and observations. But climate studies require
data of consistent spatial resolution and accuracy over
long time intervals, over which an operational NWP cen-
ter might have changed its numerical model or its data
assimilation scheme, as well as its raw data sources. To
satisfy this need, several NWP centers have started in
the 1990s to produce so-called reanalyses that use the
archived data over multidecadal time intervals, typically
since World War II, as well as the best model and data
assimilation method available at the time of the reanal-
ysis project. For obvious reasons of computational cost,
reanalyses are often run at a lower spatial resolution than
the latest version in operational use at that time.

Some leading examples of such diachronically coherent

reanalyses for the atmosphere are those produced by the
European Centre for Medium-range Weather Forecasts
(ECMWF: Dee and Coauthors, 2011), the NCEP-NCAR
Reanalysis produced in collaboration by the U.S. Na-
tional Centers for Environmental Prediction (NCEP) and
the National Center for Atmospheric Research (NCAR:
Kistler and Coauthors, 2001), and the JRA-25 reanaly-
sis produced by the Japan Meteorological Agency (JMA:
Onogi and Coauthors, 2007). While these reanalyses
agree pretty well for fields that are relatively well ob-
served, such as the geopotential field (see Sect. II.C
herein) over the continents of the Northern Hemisphere,
substantial differences persist in their fields over the
Southern Hemisphere or those that are poorly observed
or not at all (Dell’Aquila et al., 2005, 2007; Kharin et al.,
2005; Kim and Kim, 2013; Marques et al., 2010, 2009).

Recently, Compo et al. (2011) produced a centennial
reanalysis from 1871 to the present by assimilating only
surface pressure reports and using observed monthly sea-
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FIG. 9: Schematic diagram of filtering (F), smoothing (S)

and prediction (P); green filled circles are observations.

Based on Wiener (1949).

FIG. 10: Schematic diagram of a forecast–assimilation cycle

that is used for constructing the best estimates of the state

of the atmosphere, oceans or both through the procedure of

data assimilation: observational data are dynamically

interpolated using the a meteorological, oceanographic or

coupled model to yield the analysis products. The red arrow

corresponds to a longer forecast, made only from time to

time. Greater detail for the case of operational weather

prediction appears in Ghil (1989, Fig. 1).

surface temperature and sea-ice distributions as bound-
ary conditions, while Poli et al. (2016) provided a sim-
ilar product for the time interval 1899–2010, where the
surface pressure and the surface winds were assimilated.
These enterprises are motivated by the need to provide a
benchmark for testing the performance of climate models
for the late 19th and the 20th century.

A similar need has become manifest for the oceans: on
the one hand, several much more substantial data sources
have become available through remote sensing, prompt-
ing detailed modeling of the oceans; on the other, the
study of the climate as a coupled system requires a more
uniform data set, albeit less accurate than for the atmo-
sphere. Thus the equivalent of a reanalysis for the oceans
had to be produced, in spite of the fact that the equiva-
lent of NWP for the oceans did not exist. A good example
of a diachronically coherent data set for the global ocean
is the Simple Ocean Data Assimilation (SODA: Carton
and Giese, 2008). More recently, the community of ocean

modelers and observation specialists has delivered several
ocean reanalyses able to provide a robust estimate of the
state of the ocean (Balmaseda et al., 2015; Lee et al.,
2009).

Finally, by relying on recent advances in numerical
methods and in the increased availability of observa-
tional data, as well as of increased performance of com-
puting and storage capabilities, coupled atmosphere–
ocean data assimilation systems have been constructed
(e.g., Penny and Hamill, 2017). Vannitsem and Lucarini
(2016) provide a theoretical rationale for the need of cou-
pled data assimilation schemes to be able to deal effec-
tively with the climate system’s multiscale instabilities.
These coupled systems play a key role in efforts to pro-
duce seamless weather, subseasonal-to-seasonal (S2S),
seasonal, and interannual climate predictions (Palmer
et al., 2008; Robertson and Vitart, 2018); they have al-
ready been used for constructing climate reanalyses (e.g.,
Karspeck et al., 2018; Laloyaux et al., 2018).

2. Proxy Data

As mentioned already repeatedly, and discussed in
greater detail in Sect. II.B below, climate variability cov-
ers a vast range of time scales, and the information we
can garner from the instrumental record is limited to the
last century or two. Even so-called historical records only
extend to the few millennia of a literate humanity (Lamb,
1972). In order to extend our reach beyond this eyeblink
of the planet’s life, it is necessary to resort to indirect
measures of past climatic conditions able to inform us on
its state thousands or even millions of years ago.

Climate proxies are physical, chemical or biological
characteristics of the past that have been preserved in
various natural repositories and that can be correlated
with the local or global state of the atmosphere, oceans
or cryosphere at that time. Paleoclimatologists and geo-
chemists currently take into consideration multiple proxy
records, including coral records (Boiseau et al., 1999;
Karamperidou and Coauthors, 2015) and tree rings (Es-
per et al., 2002) for the last few millennia, as well as
marine-sediment (Duplessy and Shackleton, 1985; Tar-
icco et al., 2009) and ice-core (Andersen and Coauthors,
2004; Jouzel et al., 1991) records for the last two mil-
lion years of Earth history, the Quaternary. Glaciation
cycles, i.e. an alternation of warmer and colder climatic
episodes, dominated the latter era. The chemical and
physical characteristics, along with the accumulation rate
of the samples, require suitable calibration and dating,
and are used thereafter to infer some of the properties of
the climate of the past (e.g., Cronin, 2010; Ghil, 1994,
and references therein).

Proxies differ enormously in terms of precision, uncer-
tainties in the values and dating, and spatio-temporal
extent, nor do they cover homogeneously the Earth. It is
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common practice to combine and cross-check many differ-
ent sources of data to have a more precise picture of the
past (Cronin, 2010; Imbrie and Imbrie, 1986). Recently,
data assimilation methods have started to be applied to
this problem as well, using simple models and addressing
the dating uncertainties in particular (e.g., Roques et al.,
2014). Combining the instrumental and proxy data —
with their very different characteristics of resolution and
accuracy — is a complex, and sometimes controversial,
exercise in applied statistics. An important example is
that of estimating the globally averaged surface air tem-
perature record well before the industrial era, cf. Fig. 4
and previous discussion on the hockey stick controversy
in Sect. I.B.2.

B. Climate Variability on Multiple Time Scales

The presence of multiple scales of motions — in space
and in time — in the climate system can be summa-
rized through so-called Stommel diagrams. Figure 11a
presents the original Stommel (1963) diagram, in which
a somewhat idealized spectral density associated with
the oceans’ variability was plotted in logarithmic space
and time scales, while identifying characteristic oceanic
phenomena whose variance exceeds the background level.
Stommel diagrams describe the spatial-temporal variabil-
ity in a climatic subdomain by associating different, phe-
nomenologically well-defined dynamical features — such
as cyclones and long waves in the atmosphere or me-
anders and eddies in the ocean — with specific ranges
of scales; they emphasize relationships between spatial
and temporal scales of motion. Usually, specific dynami-
cal features are associated with specific approximate bal-
ances governing the properties of the evolution equations
of the geophysical fluids, cf. Sect. II.C.2.

In Figs. 11b and 11c, a qualitative Stommel diagram
portrays today’s estimates of the main range of spatial
and temporal scales in which variability is observed for
the oceans and the atmosphere, respectively. One im-
mediately notices that larger spatial scales are typically
associated with longer temporal scales, in both the at-
mosphere and oceans. The two plots clearly show that,
for both geophysical fluids, a “diagonal” of high spectral
density in the wavelength–frequency plane predominates.
As the diagonal reaches the size of the planet in space,
the variability can no longer maintain this proportional-
ity of scales and it keeps increasing in time scales, which
are not bounded, while the spatial ones are.

Both extratropical cyclones in the atmosphere and ed-
dies in the ocean are due to baroclinic instability, but
their characteristic spatial extent in the ocean is ten times
smaller and their characteristic duration is one hundred
times longer than in the atmosphere. In Fig. 11c, three
important meteorological scales are explicitly mentioned:
the microscale (small-scale turbulence), the mesoscale

(e.g. thunderstorms and frontal structures), and the syn-
optic scale (e.g. extratropical cyclones).

Given the different dynamical variability ranges in
space and time, different classes of numerical models,
based on different dynamical balances, can simulate ex-
plicitly only one or a few such dynamical ranges. The
standard way of modeling processes associated with a
particular range of scales is to “freeze” processes on
slower time scales or to prescribe their slow, quasi-
adiabatic effect on the variability being modeled, in order
to handle the processes that are too large or too slow in
scale to be included in the model.

As for the faster processes, these are “parametrized,”
i.e. one attempts to model their net effect on the variabil-
ity of interest. Such parametrizations have been, until
fairly recently, purely deterministic but have started over
the last decade or so to be increasingly stochastic (Palmer
and Williams, 2009, and references therein). We will dis-
cuss the mathematics behind parametrizations and pro-
vide a few examples in Sect. III.G.

To summarize, there are about 15 orders of magnitude
in space and in time that are active in the climate sys-
tem, from continental drift at millions of years to cloud
processes at hours and shorter. The presence of such a
wide range of scales in the system provides a formidable
challenge for its direct numerical simulation. There is no
numerical model that can include all the processes that
are active on the various spatial and temporal scales and
can run for 107 simulated years. Ockham’s razor and
its successors, including Poincaré’s parsimony principle
(Poincaré, 1902), suggest that, if we had one, it wouldn’t
necessarily be such a good tool for developing scientific
insight, rather than just a gigantic simulator not helping
scientists to distinguish the forest from the trees.

1. A Survey of Climatic Time Scales

Combining proxy and instrumental data allows one to
gather information not only on the mean state of the
climate system, but also on its variability on many dif-
ferent scales. An artist’s rendering of climate variability
on all time scales is provided in Fig. 12a. The first ver-
sion of this figure was produced by Mitchell (1976) and
many versions thereof have circulated since. The figure
is meant to provide semi-quantitative information on the
spectral power S = S(ω), where the angular frequency
ω is 2π times the inverse of the oscillation period; S(ω)
is supposed to give the amount of variability in a given
frequency band for a generic climatic variable, although
one has typically in mind the globally averaged surface air
temperature. Unlike in the Stommel diagrams of Fig. 11,
there is no information on the spatial scales of interest.

This power spectrum is not computed directly by spec-
tral analysis from a time series of a given climatic quan-
tity, such as (local or global) temperature; indeed, there
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(a) Stommel diagram of ocean variability

(b) Chelton diagram of ocean variability
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(c) COMET diagram of atmospheric variability

FIG. 11: Idealized wavelength-and-frequency power spectra
for the climate system. (a) The original Stommel (1963)

diagram representing the spectral density (vertical
coordinate) of the oceans’ variability as a function of the

spatial and temporal scale. (b) Diagram representing
qualitatively the main features of the ocean variability;

courtesy of D. Chelton.(c) Same as b), describing here the
variability of the atmosphere, c©The COMET program.

(a) Composite power spectrum of climate

(b) Spectrum of Central England Temperatures

FIG. 12: Power spectra of climate variability across time
scales. (a) An artist’s rendering of t e composite power

spectrum of climate variability for a generic climatic
variable, from hours to millions of years; it shows the

amount of variance in each frequency range. (b) Spectrum
of the Central England Temperature time series from 1650
to the present. Each peak in the spectrum is tentatively

attributed to a physical mechanism; see Plaut et al. (1995)
for details. From Ghil (2002). c©John Wiley and Sons, Ltd.

Reproduced with permission.

is no single time series that is 107 years long and has a
sampling interval of hours, as the figure would suggest.
Figure 12a includes, instead, information obtained by an-
alyzing the spectral content of many different time series,
for example, the spectrum of the 335-year long record of
Central England temperatures in Fig. 12b. This time
series is the longest instrumentally measured record of
temperatures; see, though, Kondrashov et al. (2005a) for
Nile River water levels. Given the lack of earlier instru-
mental records, one can imagine, but cannot easily con-
firm, that the higher-frequency spectral features might
have changed, in amplitude, frequency or both, over the
course of climatic history.
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With all due caution in its interpretation, Fig. 12a
reflects three types of variability: (i) sharp lines that
correspond to periodically forced variations, at one day
and one year; (ii) broader peaks that arise from internal
modes of variability; and (iii) a continuous portion of the
spectrum that reflects stochastically forced variations, as
well as deterministic chaos (Ghil, 2002).

Between the two sharp lines at 1 day and 1 year lies
the synoptic variability of mid-latitude weather systems,
concentrated at 3–7 days, as well as intraseasonal vari-
ability, i.e. variability that occurs on the time scale of
1–3 months. The latter is also called low-frequency at-
mospheric variability, a name that refers to the fact that
this variability has lower frequency, or longer periods,
than the life cycle of weather systems. Intraseasonal vari-
ability comprises phenomena such as the Madden–Julian
oscillation of winds and cloudiness in the tropics or the
alternation between episodes of zonal and blocked flow
in mid-latitudes (Ghil and Childress, 1987; Ghil et al.,
1991; Ghil and Mo, 1991; Haines, 1994; Molteni, 2002).

Immediately to the left of the seasonal cycle in Fig. 12a
lies interannual, i.e. year-to-year, variability. An impor-
tant component of this variability is the El Niño phe-
nomenon in the Tropical Pacific: once about every 2–7
years, the sea-surface temperatures (SSTs) in the East-
ern Tropical Pacific increase by one or more degrees
over a time interval of about one year. This SST varia-
tion is associated with changes in the trade winds over
the Tropical Pacific and in sea level pressures (Bjerknes,
1969; Philander, 1990); an East–West seesaw in the lat-
ter is called the Southern Oscillation. The combined El
Niño–Southern Oscillation (ENSO) phenomenon arises
through large-scale interaction between the equatorial
Pacific and the atmosphere above. Equatorial wave dy-
namics in the ocean plays a key role in setting ENSO’s
time scale (Cane and Zebiak, 1985; Dijkstra and Burgers,
2002; Neelin et al., 1998, 1994).

The greatest excitement among climate scientists, as
well as the public, is more recently being generated by in-
terdecadal variability, i.e. climate variability on the time
scale of a few decades, the time scale of an individual
human’s life cycle (Martinson et al., 1995). Figure 12b
represents a “blow-up” of the interannual-to-interdecadal
portion of Fig. 12a. The broad peaks are due to the cli-
mate system’s internal processes: each spectral compo-
nent can be associated, at least tentatively, with a mode
of interannual or interdecadal variability (Plaut et al.,
1995). Thus the rightmost peak, with a period of 5.5
years, can be attributed to the remote effect of ENSO’s
low-frequency mode (Ghil et al., 2002; Ghil and Robert-
son, 2000), while the 7.7-year peak captures a North
Atlantic mode of variability that arises from the Gulf
Stream’s interannual cycle of meandering and intensifi-
cation (Dijkstra and Ghil, 2005, and references therein).
The two interdecadal peaks, near 14 and 25 years, are
also present in global records, instrumental as well as pa-

leoclimatic (Delworth and Mann, 2000; Ghil et al., 2002;
Kushnir, 1994; Mann et al., 1998; Moron et al., 1998).

Finally, the leftmost part of Fig. 12a represents pale-
oclimatic variability. The information summarized here
comes exclusively from proxy indicators of climate; see
Sect. II.A.2.

The presence of near-cyclicity is manifest, in this range,
in the broad peaks present in Fig. 12a between roughly
1 kyr and 1 Myr. The two peaks at about 20 kyr and
40 kyr reflect variations in Earth’s orbit, while the dom-
inant peak at 100 kyr remains to be convincingly ex-
plained (Ghil, 1994; Gildor and Tziperman, 2001; Imbrie
and Imbrie, 1986). Quaternary glaciation cycles provide
a fertile testing ground for theories of climate variabil-
ity for two reasons: (i) they represent a wide range of
climatic conditions; and (ii) they are much better docu-
mented than earlier parts of paleoclimatic history.

Within these glaciation cycles, there are higher-
frequency oscillations prominent in North Atlantic pale-
oclimatic records. These are the Heinrich (1988) events,
with a near-periodicity of 6–7 kyr, and the Dansgaard-
Oeschger cycles (Dansgaard et al., 1993) that provide the
peak at around 1–2.5 kyr in Fig. 12a. Rapid changes in
temperature, of up to one half of the amplitude of a typ-
ical glacial–interglacial temperature difference, occurred
during Heinrich events and somewhat smaller ones over a
Dansgaard-Oeschger cycle. Progressive cooling through
several of the latter cycles followed by an abrupt warming
defines a Bond cycle (Bond et al., 1995). In North At-
lantic sediment cores, the coldest part of each Bond cycle
is marked by a so-called Heinrich layer that is rich in ice-
rafted debris. None of these higher-frequency phenomena
can be directly connected to orbital or other cyclic forc-
ings.

In summary, climate variations range from the large-
amplitude climate excursions of past millennia to smaller-
amplitude fluctuations on shorter time scales. Several
spectral peaks of variability can be clearly related to forc-
ing mechanisms; others cannot. In fact, even if the exter-
nal forcing were constant in time — i.e., if no systematic
changes in insolation or atmospheric composition, such
as trace gas or aerosol concentrations, would occur —
the climate system would still display variability on many
time scales. This statement is clearly true for interannual
ENSO variability in the equatorial Pacific, as discussed
above. We will understand multiscale climate variability
better in Sects. III and IV , where we will look in greater
detail at natural climate variability and climate response
to forcings, respectively.

2. Atmospheric Variability in Mid-latitudes

Mid-latitude atmospheric variability during boreal
winter — when the winds are stronger and the variability
is larger in the Northern Hemisphere — has long been a
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major focus of dynamic meteorology. The intent of this
section is to motivate the reader to appreciate the com-
plexity of large-scale atmospheric dynamics by focusing
on a relatively well understood aspect thereof. We shall
see that fairly diverse processes contribute to the spectral
features discussed in connection with Fig. 12.

The synoptic disturbances that are most closely associ-
ated with mid-latitude weather have characteristic time
scales of the order of 3–10 days, with a corresponding
spatial scale of the order of 1 000–2 000 km (Holton
and Hakim, 2013). They roughly correspond to the fa-
miliar eastward-propagating cyclones and anticyclones,
and emerge as a result of the process of baroclinic in-
stability, which converts available potential energy of the
zonal flow into eddy kinetic energy; this conversion occurs
through the lowering of the center of mass of the atmo-
spheric system undergoing an unstable development, as a
result of the negative correlation between vertical veloc-
ity and anomalies of the atmospheric density. Baroclinic
instability (Charney, 1947; Holton and Hakim, 2013; Val-
lis, 2006) is active when the meridional temperature gra-
dient or, equivalently (see below), the vertical wind shear
are strong enough. These conditions are more readily ver-
ified in the winter season, which features a large equator-
to-pole temperature difference and a strong mid-latitude
jet (Holton and Hakim, 2013; Speranza, 1983).

The space–time spectral analysis introduced by
Hayashi (1971) and refined by Pratt (1976) and by
Fraedrich and Bottger (1978) builds upon the idea of the
Stommel diagrams in Fig. 11. In addition, it provides
information about the direction and speed at which the
atmospheric eddies move and associates to each range
of spatial and temporal scales a corresponding weight in
terms of spectral power. This information may be ob-
tained, in the first instance, by Fourier analysis of a one-
dimensional spatial field and it allows one to reconstruct
the propagation of atmospheric waves. This analysis is
usually carried out in the so-called zonal, i.e. west-to-east
direction; see Sect. II.C below.

Next, one can compute the power spectrum in the fre-
quency domain for each spatial Fourier component, and
then average the results across consecutive winters to
derive a climatology of winter atmospheric waves. The
difficulty here lies in the fact that straightforward space–
time decomposition will not distinguish between standing
and traveling waves: a standing wave will give two spec-
tral peaks corresponding to waves that travel east- and
westward at the same speed and with the same phase.
This problem can only be circumvented by making as-
sumptions regarding a given wave’s nature. For instance,
we may assume complete coherence between the east-
ward and westward components of standing waves and
attribute the incoherent part of the spectrum to actual
traveling waves.

Figure 13 shows the spectral properties of the win-
ter 500-hPa geopotential height field meridionally aver-

aged across the mid-latitudes of the northern hemisphere
(specifically, between 30◦ and 75◦ N) for the time interval
1957–2002. The properties of all the waves, as well as the
standing, eastward- and westward-traveling waves appear
in panels (a)–(d), respectively. As discussed later, the
500-hPa height field provides a synthetic yet comprehen-
sive picture of the atmosphere’s synoptic to large-scale
dynamics.

Figure 13c clearly shows that the eastward-
propagating waves are dominated by synoptic vari-
ability, concentrated between 3–12-day periods and
zonal wavenumbers 5–8; note that a single cyclone or
anticyclone counts for half-a-wavelength. In addition,
the slanting high-variability ridge in HE indicates the
existence of a statistically defined dispersion relation
that relates frequency and wavenumber, in agreement
with the basic tenets of baroclinic instability theory
(Holton and Hakim, 2013).

When looking at the westward propagating variance in
Fig. 13d, one finds that the dominant portion of the vari-
ability is associated with low-frequency, planetary-scale
Rossby waves. Finally, Fig. 13b shows the contribution to
the variance given by standing waves, which correspond
to large-scale, geographically locked and persistent phe-
nomena like blocking events. Note that westward prop-
agating and stationary waves provide the lion’s share of
the overall variability of the atmospheric field; see also
Kimoto and Ghil (1993a, Fig. 7).

The dynamics and energetics of planetary waves are
still under intensive scrutiny. Descriptions and expla-
nations of several highly nonlinear aspects thereof are
closely interwoven with those of blocking events, identi-
fied as persistent, large-scale deviations from the zonally
symmetric general circulation (Benzi et al., 1986a; Benzi
and Speranza, 1989; Charney and DeVore, 1979; Ghil
and Childress, 1987; Kimoto and Ghil, 1993a; Legras and
Ghil, 1985). Persistent blocking events affect strongly
the weather for up to a month over continental-size ar-
eas. Such persistence offers some hope for extended
predictability of large-scale flows, and of the associated
synoptic-scale weather, beyond the usual predictability
of the latter, which is believed not to exceed 10–15 days
(Lorenz, 1996, and references therein).

Today, the most highly resolved and physically detailed
NWP models are reasonably good at predicting the per-
sistence of a blocking event, once the model’s initial state
is within that event, but not at predicting the onset of
such an event or its collapse (Ferranti et al., 2015). Like-
wise, the capability of necessarily lower-resolution cli-
mate models to simulate the spatio-temporal statistics of
such events is far from perfect; in fact, relatively limited
improvement has been realized in the last two decades
(Davini and D’Andrea, 2016). Weeks et al. (1997) repro-
duced successfully in the laboratory key features of the
dynamics and statistics of blocking events.

Ghil and Robertson (2002) reviewed several schematic
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FIG. 13: Variance H of the winter (December-January-February) atmospheric fields in the mid-latitudes of the Northern
Hemisphere. (a) Total variance HT; (b) variance associated with standing waves HS; (c) variance associated with

eastward-propagating waves HE; and (d) variance associated with westward-propagating waves HW. Based on NCEP-NCAR
reanalysis data (Kistler and Coauthors, 2001). See text for details. From Dell’Aquila et al. (2005), with permission from the

American Geophysical Union.

descriptions of the mid-latitude atmosphere’s low-
frequency variability (LFV) as jumping between a zonal
regime and a blocked one or, more generally, a small num-
ber of such regimes. This coarse-graining of the LFV’s
phase space and Markov chain representation of the dy-
namics continues to inform current efforts at understand-
ing what atmospheric phenomena can be predicted be-
yond 10–15 days and how. Recently, analyses based on
dynamical systems theory have associated blocked flow
configurations with higher instability of the atmosphere
as a whole (Faranda et al., 2017; Lucarini and Grit-
sun, 2019; Schubert and Lucarini, 2016), as predicted by
Legras and Ghil (1985).

The effect of global warming on the statistics of block-
ing events has become recently a matter of consider-
able controversy. The sharper increase of near-surface
temperatures in the Arctic than near the Equator is
fairly well understood (e.g., Ghil, 1976, Fig. 7) and
has been abundantly documented in recent observations
(e.g., Walsh, 2014, Fig. 8). This decrease of pole-to-
equator temperature difference ∆T is referred to as polar
amplification of global warming.

Francis and Vavrus (2012) and Liu et al. (2012) have
suggested that reduced ∆T slows down the prevailing
westerlies and increases the north–south meandering of
the subtropical jet stream, resulting in more frequent
blocking events. This suggestion seems to agree with
fairly straightforward arguments of several authors on the
nature of blocking (Charney and DeVore, 1979; Ghil and
Childress, 1987; Legras and Ghil, 1985), as illustrated, for
instance, in Ghil and Robertson (2002, Fig. 2): The driv-
ing jet ψ∗A in the figure is proportional to ∆T , in accor-
dance with standard quasi-geostrophic flow theory,1 and
lower jet speeds ψA favor blocking. But considerable ev-
idence against this apparently straightforward argument
has accumulated, too (Barnes and Screen, 2015; Hassan-
zadeh et al., 2014, and references therein). The existence
of a nontrivial relation between intensity of the jet and
probability of occurrence of blocking events has been also
presented by Ruti et al. (2006), who used as theoretical

1 See Sects. II.C.2 and II.C.3 for geostrophic balance, quasi-
geostrophy and their consequences.
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framework the theory of low-frequency variability of the
atmosphere proposed by Benzi et al. (1986a).

C. Basic Properties and Fundamental Equations

1. Governing Equations

The evolution of the atmosphere, the oceans, the soil,
and the ice masses can be described by using the contin-
uum approximation, in which these subsystems are rep-
resented by field variables that depend on three spatial
dimensions and time. For each of the climatic subdo-
mains, we consider the following field variables: the den-
sity ρ and the heat capacity at constant volume C, with
the specific expression for ρ and C defining the thermody-
namics of the medium; the concentration of the chemical
species {ξk : 1 ≤ k ≤ K} contained in the medium, and
present in different phases, e.g. the salt dissolved in the
oceans or the water vapor in the atmosphere; the three
components {vi : 1 ≤ i ≤ 3} of the velocity vector; the
temperature T ; the pressure p; the heating rate J ; and
the gravitational potential Φ.

Note that, by making the thin-shell approximation
H/R � 1, where H is the vertical extent of the geo-
physical fluid and R is the radius of the Earth, we can
assume that the gravitational potential at the local sea
level is zero and we can thus safely use the approxima-
tion Φ = gz, where Φ is then called the geopotential, g
is the gravity at the surface of the Earth, and z is the
geometric height above sea level. Moreover, one has to
take into account that the climate system is embedded
in a noninertial frame of reference that rotates with an
angular velocity Ω with components {Ωi : 1 ≤ i ≤ 3}.

The PDEs that govern the evolution of the field vari-
ables are based on the budget of mass, momentum and
energy. When the fluid contains several chemical species,
their separate budgets also have to be accounted for (Val-
lis, 2006). In order to have a complete picture of the
Earth system, one should in principle also consider the
evolution of biological species. Doing so, however, is well
beyond our scope here, even though present Earth system
models do attempt to represent biological processes, al-
beit in a simplified way; see later discussion in Sect. II.D.

The mass budget equations for the constituent species
can be written as follows:

∂t(ρξk) = −∂i(ρξkvi) +Dξk + Lξk + Sξk . (1)

Here ∂t is the partial derivative in time and ∂i in the
xi-direction; Dξk , Lξk and Sξk are the diffusion opera-
tor, phase changes, and local mass budget due to other
chemical reactions that are associated with k.

The momentum budget’s ith component is written:

∂t(ρvi) =− ∂j(ρvjvi)− ∂ip+ ρ∂iΦ

− 2ρεijkΩjvk + Ti + Fi. (2)

Here the Levi-Civita antisymmetric tensor εijk has been
used to write the Coriolis force; Ti indicates direct me-
chanical forcings, e.g. those resulting from luni-solar
tidal effects; Fi = −∂jτij corresponds to friction, with
{τij} the stress tensor; and summation over equal in-
dices is used. Equation (2) is just a forced version of
the momentum equation in the Navier-Stokes equations
(NSEs), written in a rotating frame of reference.

In general, one can write the specific energy of the
climate system as the sum of the specific internal, po-
tential, and kinetic energies, taking into account also the
contributions coming from chemical species in different
phases. In order to get manageable formulas, some ap-
proximations are necessary (see, e.g., Peixoto and Oort,
1992).

Neglecting reactions other than the phase changes be-
tween the liquid and gas phases of water, the expression
of the specific energy in the atmosphere is

e = cvT + Φ + vjvj/2 + Lq,

where cv is the specific heat at constant volume for the
gaseous atmospheric mixture, L is the latent heat of evap-
oration, and q is the specific humidity. In this formula,
we neglect the heat content of the liquid and solid water
and the heat associated with the phase transition be-
tween solid and liquid water. Instead, the approximate
expression for the specific energy in the oceans is

e = cWT + Φ + vjvj/2,

where cW is the specific heat at constant volume of water,
while neglecting the effects of salinity and of pressure.
Finally, for the specific energy of soil or ice, we can take
e = c{S,I}T + Φ, respectively.

After some nontrivial calculations, one derives the fol-
lowing general equation for the local energy budget:

∂t(ρe) = −∂j(ρεvj)− ∂jQSW
j − ∂jQLW

j

− ∂jJSH
j − ∂jJLH

j − ∂j(viτij) + viTi, (3)

where e is the energy per unit mass and ε = e + p/ρ is
the enthalpy per unit mass. The energy source and sink
terms can be written as the sum of the work done by the
mechanical forcing viTi and of the respective divergences
of the shortwave (solar) and longwave (terrestrial) com-
ponents of the Poynting vector, QSW

j and QLW
j ; of the

turbulent sensible and latent heat fluxes, JSH
j and JLH

j ;
and of the scalar product of the velocity field with the
stress tensor viτij .

Equation (3) is written in a conservative form, with
the right-hand side containing only the sum of flux di-
vergences, except for the last term, which is negligible.
By taking suitable volume integrals of Eq. (3) and as-
suming steady-state conditions, one derives meridional
enthalpy transports from the zonal budgets of energy
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fluxes (Ghil and Childress, 1987; Lucarini et al., 2014; Lu-
carini and Ragone, 2011; Peixoto and Oort, 1992); recall
Figs. 2(a,b). The presence of inhomogeneous absorption
of shortwave radiation due to the geometry of the Sun–
Earth system and of the physico-chemical properties of
the climatic subdomains determines the presence of non-
equilibrium conditions for the climate system, as already
discussed in Sect. I.A.

Various versions of Eqs. (1)–(3) have been studied for
over a century, while well-established thermodynamical
and chemical laws describe accurately the phase transi-
tions and reactions of the climate system’s constituents.
Finally, quantum mechanics allows one to calculate in
detail the interaction between matter and radiation.

Still, despite the fact that climate dynamics is governed
by well-known evolution equations, it is way beyond our
scientific abilities to gain a complete picture of the math-
ematical properties of the solutions. In fact, many funda-
mental questions are still open regarding the basic NSEs
in a homogeneous fluid, without phase transitions and ro-
tation (Temam, 1984, 1997). In particular, even for the
basic NSEs, providing analytical, closed-form solutions
is only possible in some highly simplified cases that are
either linear or otherwise separable (Batchelor, 1974).

As already discussed above, Eqs. (1)–(3) can simulate
a range of phenomena that spans many orders of magni-
tude in spatial and temporal scales. Hence, it is virtually
impossible to construct numerical codes able to repre-
sents explicitly all the ongoing processes, at the needed
resolution in space and time. It is thus necessary to
parametrize the processes that occur at subgrid scales
and cannot, therewith, be directly represented. Among
the most important processes of this type are cloud–
radiation interactions and turbulent diffusion. We will
discuss the theoretical framework behind the formulation
of parametrizations in Sect. III.G.

2. Approximate Balances and Filtering

Equations (1)–(3) are too general and contain too
many wave propagation speeds and instabilities in or-
der to properly focus on certain classes of phenomena
of interest. For instance, the fluid’s compressibility only
plays a role in the propagation of very fast acoustic waves,
whose energy is negligible, compared to that of the winds
and currents we are interested in here.

Therefore, starting with Charney (1947), more or less
systematic approximations have been introduced to fil-
ter out undesirable waves from the equations of motion
and to study particular classes of phenomena and pro-
cesses. Depending on the climate subsystem and the
range of scales of interest, different approximations can
be adopted. For example, if one considers ice sheets and
bedrock on the time scale of millennia, it is reasonable
to assume that vj ' 0, i.e., to remove the flow field from

the evolution equation (Ghil, 1994; Saltzman, 2001, and
references therein). Obviously, this approximation is not
valid if one wants to describe explicitly the motion of the
ice sheets on shorter time scales (Paterson, 1981).

More precisely, the filtering process consists in apply-
ing a set of mathematical approximations into the fun-
damental governing equations — usually considered to
be a suitable generalization of the classical NSEs, like
Eqs. (1)–(3). The purpose of this filtering is to exclude
from the filtered system certain physical processes that
are heuristically assumed to play only a minor role in
its dynamics at the time and space scale under investi-
gation. The magnitudes of all the terms in the govern-
ing equations for a particular type of motion are esti-
mated by dimensional analysis (Barenblatt, 1987), and
various classes of simplified equations have been derived
by considering distinct asymptotic regimes in the as-
sociated scales (Ghil and Childress, 1987; Klein, 2010;
McWilliams, 2006; Pedlosky, 1987).

The approximations adopted rely on assuming that the
continuous medium, whether fluid or solid, obeys suit-
ably defined time-independent relations — or undergoes
only small departures from such relations — and that
these relations result from the balance of two or more
dominating forces. Imposing such balances leads to re-
ducing the number of independent field variables of the
system that obey a set of evolution equations.

In meteorological terminology, a prognostic variable
whose tendency, i.e. time derivative, appears in the full
equations, may thus become a diagnostic variable, which
only appears in a nondifferentiated form in the filtered
equations. Additionally, the imposition of dynamical bal-
ances leads to removing specific wave motions from the
range of allowed dynamical processes. Below we shall see
two of the most important examples of filtering, which,
among other things, are essential for the practical im-
plementation of numerical models of the atmosphere and
oceans (Cushman-Roisin and Beckers, 2011a; Holton and
Hakim, 2013; Vallis, 2006).

a. Hydrostatic Balance. A classical example of filtering
is the hydrostatic approximation. In a local Cartesian
coordinate system (x, y, z), we define by ẑ= −∇Φ/|∇Φ|
the direction perpendicular to a geopotential isosurface
Φ ≡ const. An obvious stationary solution of the NSEs is
given in these coordinates by the time-independent hy-
drostatic balance equation:

ρhg = −∂zph, (4)

where the subscript ‘h’ denotes this particular solution.

On sufficiently large spatial and temporal scales, many
geophysical flows — e.g., atmospheric and oceanic, as
well as continental surface and ground water — are near
hydrostatic equilibrium. In general, stable hydrostatic
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equilibrium is achieved when fluid with lower specific en-
tropy lies below fluid with higher specific entropy; in this
case, Eq. (4) is obeyed for all (x, y, z) within the domain
occupied by the fluid.

When this condition is broken because of external forc-
ing or internal heating, say, the stratification is not stable
and the fluid readjusts so as to reestablish the hydrostatic
equilibrium. This readjustment is achieved by vertical
convective motions, in which available potential energy
is transformed into kinetic energy responsible for vertical
motions that can be locally much faster than the large-
scale flow. Violations of hydrostatic balance thus exist
only on short time and space scales.

A large class of models used in studying, simulating
and attempting to predict climate variability and climate
change is based on a particular simplification of the full
set of Eqs. (1)–(3). This simplification is called the prim-
itive equations, which filter out nonhydrostatic motions.
As a result, sound waves are excluded from the solutions,
a fact that greatly facilitates the numerical implementa-
tion of such models (Cushman-Roisin and Beckers, 2011a;
Washington and Parkinson, 2005).

The primitive equations are derived by assuming
that the time-independent hydrostatic balance given in
Eq. (4) does apply at all times, even when the flow is time
dependent. One thus assumes that the vertical accelera-
tion of the fluid is everywhere much smaller than gravity.
Neglecting the vertical acceleration altogether leads to a
monotonic relationship between the vertical coordinate z
and pressure p.2

One can hence replace z by p as a vertical coordinate,
and rewrite the modified Eqs. (1)–(3) using a new coor-
dinate system in which one also replaces, typically, the
horizontal coordinates (x, y) by the longitude λ and the
latitude φ, respectively. In such a coordinate system,
v3 ≡ ω ≡ ∂tp is the change of pressure with time, the
three-dimensional (3-D) velocity field is nondivergent,
∂jvj = 0, and the density is automatically constant and
set to 1 (Holton and Hakim, 2013; Vallis, 2006).

Despite the use of primitive equations, climate mod-
els aim at simulating a system that nonetheless features
nonhydrostatic motions. Additionally, geophysical flows
obeying primitive equations can lead to unstable verti-
cal configurations of the fluids. Typical climate mod-
els are formulated so as to quickly eliminate local non-
hydrostatic conditions and to parametrize the balanced
condition that is thus recovered in terms of variables
that are explicitly represented in the model, following
the idea of convective adjustment originally proposed by
Manabe and Strickler (1964). Finding optimal ways to

2 The validity of this approximation, even locally in space and at
most times, explains the Pascal’s experimental observation dur-
ing the famed 1648 Puy-de-Dôme ascension that a barometer’s
reading decreases monotonically with altitude.

parametrize the effect of convection on hydrostatic cli-
mate models has become a key research area in climate
dynamics; see Emanuel (1994) for a classical treatise on
the problem of atmospheric convection and Plant and
Yano (2016) for a recent overview.

The primitive equations were at the core of both cli-
mate models and weather prediction models for three
decades, from about the 1970s through the 1990s. Non-
hydrostatic models — constructed through discretization
of the full NSEs with forcing and rotation — have be-
come increasingly available over the last decade, first as
limited-area models and, more recently, even as global
ones (e.g., Marshall et al., 1997).

These models require extremely high resolution in
space and time and are computationally quite expensive;
as they start to enter operational use, they require state-
of-the-art hard- and software, in terms of both computing
and storage, as well as sophisticated post-processing of
the output. Moreover, for any practical purpose, suffi-
ciently detailed initial and boundary data are not avail-
able and methodological problems reappear in connection
with formulating such data. Still, the use of nonhydro-
static models allows, in principle, for bypassing the key
problem of parametrizing convection.

b. Geostrophic Balance. Another important example of
filtering is the one associated with time-independent
purely horizontal balanced flows, in which the horizon-
tal components of the pressure gradient force and the
Coriolis force cancel out in the NSEs. Such flows are
termed geostrophic; etymologically, this means Earth-
turning. The nondimensional parameter that determines
the validity of this approximation is the Rossby num-
ber Ro = U/f0L, where U is a characteristic horizon-
tal velocity, L a characteristic horizontal extent, and
f0 = 2Ω sinφ0; here Ω is the modulus of Earth’s an-
gular frequency of rotation around its axis, and φ0 is a
reference latitude.

The geostrophic approximation provides a rather good
diagnostic description of the flow when Ro � 1. Such
small Ro-values prevail for the atmosphere on synop-
tic and planetary scales, such as those of extratropical
weather systems — say poleward of 30◦, where f0 is
large enough — and in the free atmosphere, i.e. above
the planetary boundary layer, where frictional forces can
be comparable to the Coriolis force. In the oceans, this
approximation is extremely accurate everywhere except
very close to the equator. The smallness of Rossby num-
ber in the oceans arises from oceanic currents being or-
ders of magnitude slower than atmospheric winds, so that
Ro nears unity only where f0 is extremely small.

Purely geostrophic flow fields are obtained via a zeroth-
order expansion in Ro of the NSEs. Fluid motion is in-
troduced by considering small perturbations ρg and pg

that break the translation symmetry of the basic, purely
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(a) Geostrophic balance in Northern Hemisphere

(b) Synoptic conditions at 500 hPa over U.S.

FIG. 14: Geostrophic balance. (a) Schematics of
geostrophically balanced flow in the Northern Hemisphere:

at a given z-level, the pressure gradient force
(upward-pointing arrow), and Coriolis force

(downward-pointing arrow) cancel out and the flow
(horizontal arrow) is parallel to the isobars. (b) Synoptic
conditions for the 500-hPa level over the United States at
0000 Greenwich mean time (GMT) on 12 July 2019. The
dark gray lines indicate the isolines of geopotential height
z = Φ/g (in units of 10 m), and the barbed blue arrows
indicate the direction of the wind; the barbs indicate the

wind speed, each short (long) barb corresponding to a speed
of 5 (10) knots, with 2 knots = 1.03 ms−1. Reproduced with

permission from the NOAA-National Weather Service
https://www.spc.noaa.gov/obswx/maps/.

hydrostatic density and pressure fields, ρh and ph, but
preserve the geostrophic balance, i.e. one sets ρ = ρh+ρg

and p = ph + pg, respectively.
Letting x̂ be locally the zonal direction and ŷ be lo-

cally the meridional direction, one can write (Holton and
Hakim, 2013) geostrophic balance at each height z as:

ρhuf0 = −∂ypg, (5a)

ρhvf0 = ∂xpg, (5b)

where the derivatives are taken at constant z, (u, v) =
(v1, v2) and, furthermore, the geostrophic perturbation
itself is in hydrostatic equilibrium, i.e. gρg = −∂zpg.

The combined hydrostatic and geostrophic balance con-
strain atmospheric and oceanic motions so that the ve-
locity field is uniquely determined by the pressure field.
In such doubly balanced flows, the winds or currents are
parallel to the isobars at a given geopotential height z,
as shown in Fig. 14a, rather than perpendicular to the
isobars, as in nonrotating fluids. Moreover, the vertical
component of the velocity field vanishes, w = v3 ≡ 0.

Using the pressure coordinate system (x, y, p) de-
scribed above, where p plays the role of the vertical co-
ordinate, it is possible to express the geostrophic balance
as follows (Holton and Hakim, 2013):

f0ug = −∂yΦ, (6a)

f0vg = ∂xΦ, (6b)

where, this time, derivatives are taken at constant p. The
vertical derivative ∂pΦ can, furthermore, be expressed
in terms of ρg. For the atmosphere, one can make the
simplifying assumption of dry conditions, for which the
equation of state is described by the gas constant R and
the heat capacity at constant pressure Cp.

Assuming, moreover, a horizontally homogeneous
background state with Th = Th(p), introducing the
potential temperature Θh = Th(p/ps)

R/Cp , with ps =
const. the reference surface pressure, and letting σ :=
−RThd ln Θh/dp, which defines the stratification of the
background state, one obtains:

∂pΦ = −Rp
σ
Tg. (7)

Thus, in the geostrophic approximation, the scalar field
Φ provides complete diagnostic information on the state
of the fluid: its horizontal derivatives give us the velocity
field, while the vertical derivative gives us the geopoten-
tial, or mass field, via perturbations with respect to the
background temperature field (Holton and Hakim, 2013).

Essentially, geophysical fluid dynamics (GFD) is the
study of large-scale flows dominated by the combined hy-
drostatic and geostrophic balances. The former is a con-
sequence of the shallowness of planetary flows, the latter
of their rotation (Cushman-Roisin and Beckers, 2011a;
Ghil and Childress, 1987; McWilliams, 2006; Pedlosky,
1987). The next subsection will introduce the more com-
plex situation of finite-but-small perturbations from this
combined balance.

Although modern computers allow a fully ageostrophic
(beyond geostrophic approximation) description of most
geophysical fluids, geostrophic balance remains a fun-
damental tool of theoretical research, as well as being
used for practical applications in everyday weather pre-
diction. Figure 14b illustrates a typical mid-latitude syn-
optic situation: at a given pressure level, the winds blow,
to a very good approximation, parallel to the isolines of
geopotential height, and the speed of the wind is higher
where the gradient of geopotential height is stronger. An

https://www.spc.noaa.gov/obswx/maps/
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appendix in Ghil et al. (1979) describes the extent to
which diagnostic relations based on the geostrophic ap-
proximation are still used in the analysis and prediction
of mid-latitude weather, as simulated by advanced nu-
merical models. Indeed, geostrophic approximation is
implicit in the day-to-day reading of weather maps on
synoptic-to-planetary scales.

3. Quasi-Geostrophy and Weather Forecasting

The diagnostic, i.e. time-independent nature of the
geostrophic balance implies that the ageostrophic terms,
although relatively small, are important for the time evo-
lution of the flow. A planetary flow that evolves slowly
in time compared to 1/f0 can be described using quasi-
geostrophic theory, namely a perturbative theory that ex-
pands the NSEs in Ro and truncates at first order.

The use of the quasi-geostrophic approximation ef-
fectively filters out solutions that correspond to higher-
speed atmospheric or oceanic inertia-gravity waves; the
latter, also called Poincaré waves, are gravity waves mod-
ified by the presence of rotation (Cushman-Roisin and
Beckers, 2011a; Ghil and Childress, 1987; Holton and
Hakim, 2013; McWilliams, 2006; Pedlosky, 1987; Vallis,
2006). This approximation breaks down, though, near
frontal discontinuities and in other situations in which
the ageostrophic component of the velocity field plays an
important advective role, and it has to be improved upon
by retaining higher-order terms.

In quasi-geostrophic theory, a fundamental role is
played by the quasi-geostrophic potential vorticity3:

q =
1

f0
∆2Φ + f + ∂p

(
f0

σ
∂pΦ

)
. (8)

Here ∆2 is the horizontal Laplacian in p-ccordinates, the
first term ζg = ∆2Ψ/f0 is the relative vorticity of the
geostrophic flow, f is the planetary vorticity, and the
last term is the stretching vorticity; the static stability
σ, which measures the stratification of the fluid was in-
troduced in Eq. (7).

The potential vorticity q thus combines dynamical and
thermodynamical information on the fluid flow. In more
abstract terms, one can write:

q − f = LΦ, (9)

where L is a modified three-dimensional Laplacian oper-
ator. Using suitable boundary conditions, one can invert
the expression above and derive the mass field from the
vorticity field,

Φ = L−1(q − f). (10)

3 More general formulations of potential vorticity are quite impor-
tant in GFD (e.g., Hoskins et al., 1985).

In the absence of forcing and dissipation, q is conserved
by geostrophic motions, so that:

∂tq + J

(
Φ

f0
, q

)
= 0, (11)

where J(A,B) = ∂xA∂yB − ∂yA∂xB is the Jacobian op-
erator, so that J(Φ/f0, q) = (1/f0)(∂xΦ/∂yq − ∂yΦ∂xq)
describes vorticity advection by the geostrophic veloc-
ity field (ug, vg), cf. Eq. (5). Note that, in the limit
σ → ∞, i.e. if one assumes infinitely stable stratifica-
tion, the third term on the right-hand side of Eq. (8)
drops out, and Eq. (11) describes the conservation of the
absolute vorticity in a barotropic, two-dimensional flow.

Quasi-geostrophic theory, as introduced by Charney
(1947), arguably provided a crucial advance for the un-
derstanding of the dynamics of planetary flows and pro-
vided the foundation for the successful start of NWP
(Charney et al., 1950a). The filtering associated with
this theory was, in particular, instrumental in eliminat-
ing the numerical instability that marred the pioneering
weather forecast experiment of Richardson (1922). The
inconclusive result of his one-step, 6-hour numerical ex-
periment was received by the meteorological community
at the time as proof that NWP, as proposed by Bjerk-
nes (1904), was not possible. The success, three decades
later, of several 24-hour numerical forecasts by Charney
et al. (1950a), on the other hand, paved the way for the
theory’s successive applications to physical oceanography
and climate dynamics as a whole (Dijkstra, 2005; Ghil
and Childress, 1987; Pedlosky, 1987).

We outline herewith how the quasi-geostrophic
potential-vorticity equations can be used as a suitable
framework for performing numerical weather forecasts.
Assume that, at time t = t0, we have information on the
field Φ0 = Φ(t0).

• Step 0: Using Eq. (9), one computes the corre-
sponding potential vorticity field q0 = q(t0);

• Step A: Equation (11) is used next to predict the
potential vorticity field at time t1 as follows: q1 =
q(t1) = q(t0) +J(Φ0/f0, q0)∆t, where ∆t = t1− t0;

• Step B: Equation (10) is used now to infer Φ1;

• Step C: Go to Step A and predict q2, and so on.

In effect, J. G. Charney, R. Fjørtoft and J. von Neu-
mann performed the first successful numerical weather
forecasts on the ENIAC computer in Princeton by using
essentially the procedure detailed above for the simpler
case of barotropic, two-dimensional flow, where the stan-
dard vorticity, given by the sum of relative and planetary
vorticity, plays a role analogous to potential vorticity in
a quasi-geostrophic three-dimensional flow. The proce-
dure was adapted to describe the evolution of the 500-
hPa field, which deviates the least from the behavior of
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an idealized atmosphere of homogeneous density with no
vertical velocities. The simulation was performed on a
limited domain that covered North America and the ad-
jacent ocean areas. The authors investigated the issues
associated with horizontal boundary conditions, as well
as with the numerical stability of the integration (Char-
ney et al., 1950a). The saga of this scientific and tech-
nological breakthrough was told many times; see Lynch
(2008) for a good recent account.

D. Climate Prediction and Climate Model Performance

A key area of interest in the climate sciences is the
development and testing of numerical models used for
simulating the past, present, and future of the climate
system. As discussed later in the paper, climate models
differ enormously in terms of scientific scope, computa-
tional cost, and flexibility, so that one has to consider sys-
tematically a hierarchy of climate models, rather than one
model that could incorporate all subsystems, processes,
and scales of motion (Ghil, 2001; Ghil and Robertson,
2000; Held, 2005; Lucarini, 2002).

Figure 15a shows the so-called Bretherton horrendo-
gram (NAC, 1986), which displays the full range of sub-
systems one needs to deal with when addressing the
Earth system as a whole, along with some of the many
interactions among these subsystems. The climate mod-
eling community has slowly caught up with the complex-
ities illustrated by F. Bretherton and his colleagues in
this diagram, three decades ago.

Models of different levels of complexity and detail are
suited for addressing different kinds of questions, accord-
ing, in particular, to the main spatial and temporal scales
of interest. At the top of the hierarchy, one finds global
climate models, known in the 1970s and ‘80s as gen-
eral circulation models. Both these phrases share the
acronym GCMs, with the change in name reflecting a
change in emphasis from understanding the planetary-
scale circulation — first of the atmosphere, then of the
oceans — to simulating and predicting the global cli-
mate. GCMs aim to represent, at the highest compu-
tationally achievable resolution, the largest number of
physical, chemical, and biological processes of the Earth
system; see an early overview in Randall (2000).

The atmosphere and oceans, whose modeling relies on
the equations discussed in Sect. II.C.1 above, are still
at the core of the Earth system models being developed
today. Following improvements in basic scientific knowl-
edge, as well as in computing and data storage capabil-
ities, the latter models include an increasing number of
physical, chemical and biological processes. They also
rely on a much higher spatial and temporal resolution of
the fields of interest.

Figure 15b illustrates schematically the process of
model development across the last three decades, from

the first to the fourth assessment report: FAR–SAR–
TAR–AR4. The graph does not cover the development of
the last 5–10 years, which has largely dealt with the inclu-
sion of eco-biological modules and the above-mentioned
nonhydrostatic effects. Currently available state-of-the-
art models result from the cumulative efforts of genera-
tions of climate scientists and coding experts, with hun-
dreds of individual researchers contributing to different
parts of the code. As in the early stages of post-WWII
NWP, climate modelling exercises now are some of the
heaviest users of civilian High Performance Computing.

1. Predicting the State of the System

In spite of its remarkable progresses, climate modeling
and prediction face several kinds of uncertainties: First,
uncertainties in predicting the state of the system at a
certain lead time, given the (uncertain) knowledge of its
state at the present time. Geophysical flows are typically
chaotic, as are other processes in the system. Hence, as
discussed in depth in the next two sections, the climate
system depends has sensitively on its initial data, as sug-
gested already by Poincaré (1908) and recognized more
fully by Lorenz (1963). Following up on terminology in-
troduced by Lorenz (1976), these are uncertainties of the
first kind, namely small errors in the initial data that can
lead at later times to large errors in the flow pattern.

In a nearly linear regime, in which the phase-space
distance between the system’s orbits is small, their di-
vergence rate is described by the spectrum of Lyapunov
exponents and, in particular, by the algebraically largest
ones. A chaotic system has at least one positive Lya-
punov exponent, and physical instabilities that act on
distinct spatial and temporal scales are related to distinct
positive exponents (Eckmann and Ruelle, 1985). These
instabilities can be described by using the formalism of
covariant Lyapunov vectors (Ginelli et al., 2007).

Addressing the uncertainties of the first kind and pro-
viding good estimates for the future state of the system is
the classical goal of NWP. After the initially exponential
increase of errors, nonlinear effects kick in, and the orbits
in the ensemble populate the attractor of the system, so
that any predictive skill is lost. In such an ensemble, sev-
eral simulations using the same model are started with
slightly perturbed initial states, and the ensemble of or-
bits produced is used to provide a probabilistic estimate
of how the system will actually evolve (Palmer, 2017).

Figure 16a illustrates the main phases of error growth
from an ensemble of initial states in the Lorenz (1963)
model and Fig. 16b outlines how an ensemble forecast
system actually works. Obvious limitations are related
to the computational difficulties of running a sufficient
number of ensemble members in order to obtain an ac-
curate estimate, as well as with the fact that an initial
ellipsoid of states tends to become flattened out in time,
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(a) Bretherton horrendogram

(b) Climate model evolution

FIG. 15: The Earth system, its components and its modelling. (a) The NAC (1986) horrendogram that illustrates the main
components of the Earth system and the interactions amongst them. (b) Evolution of climate models across the first four

IPCC assessment reports, ranging from the early 1990s to the mid-2000s (IPCC, 2007).
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making the error estimate more laborious. Thus, care has
to be exercised in the choice of the initial states, which
is done in practice by taking advantage of the reanalyses
described earlier in Sect. II.A.1.

Recently, similar methods are being used on longer
time scales to perform experimental climate predictions,
seen as an initial value problem (Eade et al., 2014).
These predictions are performed on seasonal (Doblas-
Reyes et al., 2013) to decadal (Meehl et al., 2014) time
scales; they aim not only to reach a better understand-
ing of the multiscale dynamics of the climate system,
but also to help achieve the many potential benefits of
skillful medium-to-long–term predictions. One interest-
ing example of such an application is the wind energy
market (Torralba et al., 2017).

The World Climate Research Programme (WCRP)
has created an encompassing project focusing on the
challenges of subseasonal-to-seasonal (S2S) prediction;
see https://www.wcrp-climate.org/s2s-overview

and Robertson and Vitart (2018). We will delve
more specifically into extended-range forecasting in
Sect. III.E.1 and see how its performance depends
on a model’s ability to capture the natural modes of
variability of the climate system on different time scales.

2. Predicting the System’s Statistical Properties

A key goal of climate modeling is to capture the sys-
tem’s statistical properties — i.e., its mean state and its
variability — and its response to forcings of different na-
ture. These problems will be treated thoroughly in the
next two sections but are rendered quite difficult by a
second set of uncertainties. Uncertainties in model for-
mulation, as well as an unavoidably limited knowledge of
the external forcings are referred to as uncertainties of
the second kind (Lorenz, 1967, 1976; Peixoto and Oort,
1992) and limit intrinsically the possibility of providing
realistic simulations of the statistical properties of the
climate system; they affect, in particular, severely the
modeling of abrupt climate changes and of the processes
that may lead to such changes.

These deficiencies are related to uncertainties in many
key parameters of the climate system, as well as to the
fact that each model may represent incorrectly certain
processes that are relevant on the temporal and spatial
scales of interest or that it may miss them altogether.
These types of uncertainty are termed parametric and
structural uncertainty, respectively (Lucarini, 2013).

A growing number of comprehensive climate models
are available to the international scientific community
for studying the properties of the climate system and pre-
dicting climate change; currently there are about 50 such
models (IPCC, 2014a). Still, many of these models have
in common a substantial part of their numerical code, as
they originate from a relatively small number of models,

(a) Evolution in phase space

(b) Evolution in time

FIG. 16: Schematic diagram of the evolution of an ensemble
of initial states in a chaotic system. (a) A small ball of initial
states in the Lorenz (1963) convection model evolves initially
in phase space according to the stretching and contracting
directions associated with positive and negative Lyapunov

exponents, until nonlinear effects become important and the
set of initial states propagated by the system’s vector field
populates its attractor. Reproduced with permission from

Slingo and Palmer (2011). (b) Evolution in time of such an
initial ball, in a generic chaotic system. Reproduced with

permission from Swinbank et al. (2016).

atmospheric and oceanic, that were originally developed
in the 1960s and 1970s. Figure 17 illustrates this family
tree for the case of atmospheric GCMs. Hence the widely
noted fact that the climate simulations produced by this
large number of models often fall into classes that bear
marked similarities and do not necessarily resemble to
a desired extent the observed climate evolution over the

https://www.wcrp-climate.org/s2s-overview
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last century or so.
IPCC’s evolution over three decades has led to a coor-

dination and restructuring of modeling activities around
the world. In order to improve comparisons among dis-
tinct models and the replicability of investigations aimed
at climate change, the Program for Climate Model Di-
agnostics and Intercomparison (PCMDI), through its
climate model intercomparison projects (CMIPs), de-
fines standards for the modeling exercises to be per-
formed by research groups that wish to participate in
a given assessment report (AR) and provide projections
of future climate change; see http://cmip-pcmdi.llnl.
gov/cmip5/data_portal.html for CMIP5 and https:

//www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6 for
CMIP6, respectively.

The PCMDI’s CMIPs have also supported a single
website that gathers climate model outputs contribut-
ing to the IPCC-initiated activities, thereby providing a
unique opportunity to evaluate the state-of-the-art ca-
pabilities of climate models in simulating the climate
system’s past, present and future behavior. A typical
IPCC-style package of experiments includes simulating
the climate system under various conditions, such as:

• a reference state, e.g., a statistically stationary
preindustrial state with fixed parameters;

• industrial era and present-day conditions, including
known natural and anthropogenic forcings;

• future climate projections, performed by using a set
of future scenarios of greenhouse gas and aerosol
emissions and land-use change with some degree of
realism, as well as idealized ones (e.g. instanta-
neous doubling of CO2 concentration).

The latter changes of greenhouse gas, aerosol concen-
trations and land use follow a prescribed evolution over a
given time window, and are then fixed at a certain value
to observe the relaxation of the system to a new station-
ary state. Each such evolution of the forcing is defined a
“scenario” in ARs 1–4 (IPCC, 2001, 2007), and a Repre-
sentative Concentration Pathway (RCP) in AR5 (IPCC,
2014a). Note that each AR has involved an increasing
number of models, people — reaching many hundreds by
the latest AR — and hence acronyms.

Each scenario or RCP is a representation of the ex-
pected greenhouse gas and aerosol concentrations result-
ing from a specific path of industrialization and change
in land use, as provided by Working Groups II and III
to Working Group I; see Fig. 18 for AR5’s simulations of
the 20th and 21st century with two extreme RCPs. At
the same time, the attribution of unusual climatic condi-
tions to specific climate forcing is far from being a trivial
matter (Allen, 2003; Hannart et al., 2016a).

In the most recent CMIP exercise, CMIP6, the scope
of model intercomparisons has grown beyond just test-

.

FIG. 17: Family tree of the main atmospheric general
circulation models. The tree clearly shows that many of

today’s state-of-the-art models share a — smaller or larger
— portion of their genes, i.e., of the basic ideas and

parameter values that went into the coding. Reproduced
with permission from Edwards (2010).

ing future climate response to specific forcing scenar-
ios or RCPs. In order to test more comprehensively
the performance of climate models, various standardized
intercomparison projects focus on the analysis of spe-
cific subsystems, processes or time scales; see https:

//search.es-doc.org. Eyring et al. (2016a) provide
a useful summary of the strategy for PCMDI’s CMIP6
project and of the scientific questions it addresses.

3. Metrics for Model Validation

The standardization of climate model outputs pro-
moted by the CMIPs has also helped address a third ma-
jor uncertainty in climate modeling: what are the best
metrics for analyzing a model’s outputs and evaluating
its skill? Note that, in this context, the term metric does
not have its usual mathematical meaning of a distance in
function space but refers instead to a statistical estimator
of model performance, whether quadratic or not.

The validation, or auditing — i.e., the overall evalua-
tion of the faithfulness — of a set of climate models, is
a delicate operation, which can be decomposed into two
distinct but related procedures. The first one is model
intercomparison, which aims to assess the consistency

http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html
http://cmip-pcmdi.llnl.gov/cmip5/data_portal.html
https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
https://search.es-doc.org
https://search.es-doc.org
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FIG. 18: State-of-the-art climate model outputs for various climate change scenarios. Left panel: Change in the globally
averaged surface temperature as simulated by climate models included in IPCC (2014a). Vertical bands indicate the range of
model outputs, and the colors correspond to different Representative Concentration Pathways (RCPs). Right panel: Spatial
patterns of temperature change — i.e., 2081–2100 average with respect to the present — for the two most extreme RCPs.

Reproduced with permission from (IPCC, 2014a)

of different models in the simulation of certain physical
phenomena in a certain time frame. The second proce-
dure is model verification, whose goal is to compare a
model’s outputs with corresponding observed or recon-
structed scalar quantities or fields (Lucarini, 2008b).

In principle, there virtually infinite ways to construct
a metric buy taking any reasonable function of the vari-
ables included in a climate model. Nevertheless, even
if several observables are mathematically well defined,
their physical relevance and robustness can differ widely.
There is no a priori valid criterion for selecting a good
climatic observable, even though taking into account ba-
sic physical properties of the climate system can provide
useful guidance.

There is thus no unique recipe for testing climate mod-
els, a situation that is in stark contrast with more tra-
ditional areas of physics. For instance, in high-energy
physics, the variables mass, transition probability or
cross-section are suggested by the very equations that
one tries to solve or to study experimentally.

In the absence of dissipation and of sources and sinks,
certain scalars — such as the atmosphere’s or the oceans’
total mass, energy and momentum — are also conserved
by the fundamental equations of Sect. II.C.1. But it is
often more local quantities, like total rain over India dur-
ing the summer monsoon or the intensity of the subtropi-
cal jet over North America during a given winter month,
which truly matter in evaluating the skill of a climate
model. Note that current climate models still have sub-

stantial difficulties in simulating the statistics of major
climatic processes, such as ENSO in the Tropical Pacific
(Bellenger et al., 2014; Lu et al., 2018), the Indian Mon-
soon (Boos and Hurley, 2013; Hasson et al., 2013; Turner
and Annamalai, 2012), and mid-latitude LFV associated
with blocking (Davini and D’Andrea, 2016; Woollings
et al., 2018).

From the end user’s point of view, it is important to
check how realistic the modeled fields of practical interest
are. But if the aim is to define strategies for the radical
improvement of model performance — beyond incremen-
tal advances often obtained at the price of large increases
in computer power — it is crucial to fully understand the
differences among models in their representation of the
climate system, and to decide whether specific physical
processes are correctly simulated by a given model.

Additional issues, practical as well as epistemological,
emerge when we consider the actual process of compar-
ing theoretical and numerical investigations with obser-
vational or reanalysis data. Model results and approxi-
mate theories can often be tested only against observa-
tional data from a sufficiently long past history, which
may pose problems of both accuracy and coverage, as
mentioned in Sect. II.A.1.

To summarize, difficulties emerge in evaluating climate
model performance because (i) we always have to deal
with three different kinds of attractors: the attractor of
the real climate system, its reconstruction from obser-
vations, and the attractors of the climate models; and
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.

FIG. 19: Example of model performance evaluation. This diagram shows how 42 models participating in the Fifth Climate
Model Intercomparison Project (CMIP5) fare in terms of representation of the seasonal cycle during the time interval

1980–2005 for 13 climate variables. Values are normalized and perfect agreement with the observations is given by 0. See text
for details. Reproduced with permission from IPCC (2014a).

(ii) because of the high dimensionality of both the phase
space and the parameter space of these attractors.

In order to address these issues, multi-variable metrics
are currently used to try to assess the skill of available
climate models. Thus, Fig. 19 shows a diagram describ-
ing the performance of the 42 models participating in
PCMDI’s CMIP5. Even superficial analysis of the di-
agram indicates that no model is the best for all the
variables under consideration. An improved assessment
package is given by PCMDI’s Metrics Package (Gleckler
et al., 2016) and by the ESMValTool package (Eyring
et al., 2016b). Recently, Lembo et al. (2019) released
TheDiato, a flexible diagnostic tool able to evaluate com-
prehensively the energy, entropy and water budgets, and
their transports for climate models. This package will be-
come part of the second generation of the ESMValTool
package.

Finally, in order to describe synthetically and compre-
hensively the outputs of a growing number of climate
models, it has become common to consider multi-model
ensembles and focus the attention on the ensemble mean
and the ensemble spread. Mean and spread have been
taken as the, possibly weighted, first two moments of the
models’ outputs for the metric under study (Tebaldi and
Knutti, 2007); see Fig. 18.

This approach merges information from different at-
tractors and the resulting statistical estimators cannot
be interpreted in the standard way, with the mean ap-
proximating the true field and the standard deviation
describing its uncertainty. Such a naive interpretation
relies on an implicit assumption that the set is a prob-
abilistic ensemble formed by equivalent realizations of a
given process, and that the underlying probability dis-
tribution is unimodal; see Parker (2010) for a broader
epistemological discussion of the issues.

While the models in such an “ensemble of opportunity”
may be related to each other, as shown in Fig. 17, they
are by no means drawn from the same distribution. A
number of alternative approaches for uncertainty quan-
tification in climate modeling have been proposed but
they go beyond the scope of the present review.

III. CLIMATE VARIABILITY AND THE MODELING
HIERARCHY

A. Radiation Balance and Energy-Balance Models (EBMs)

The concepts and methods of the theory of determinis-
tic dynamical systems (Andronov and Pontryagin, 1937;
Arnold, 1983; Guckenheimer and Holmes, 1983) have
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been applied first to simple models of atmospheric and
oceanic flows, starting about half-a-century ago (Lorenz,
1963; Stommel, 1961; Veronis, 1963). More powerful
computers now allow their application to fairly realistic
and detailed models of the atmosphere, ocean, and the
coupled atmosphere–ocean system. We start herewith by
presenting such a hierarchy of models.

This presentation is interwoven with that of the succes-
sive bifurcations that lead from simple to more complex
solution behavior for each climate model. Useful tools for
comparing model behavior across the hierarchy and with
observations are provided by ergodic theory (Eckmann
and Ruelle, 1985; Ghil et al., 2008). Among these tools,
advanced methods for the analysis and prediction of uni-
and multivariate time series play an important role (Ghil
et al., 2002, and references therein).

The concept of a modeling hierarchy in climate dynam-
ics was introduced by Schneider and Dickinson (1974).
Several authors have discussed lately in greater detail the
role of such a hierarchy in the understanding and predic-
tion of climate variability (Dijkstra and Ghil, 2005; Ghil
and Robertson, 2000; Held, 2005; Lucarini, 2002; Saltz-
man, 2001). At present, the best-developed hierarchy is
for atmospheric models. These models were originally
developed for weather simulation and prediction on the
time scale of hours to days. Currently they serve — in a
stand-alone mode or coupled to oceanic and other models
— to address climate variability on all time scales.

The first rung of the modeling hierarchy for the at-
mosphere is formed by zero-dimensional (0-D) models,
where the number of dimensions, from zero to three,
refers to the number of independent space variables used
to describe the model domain, i.e. to physical-space di-
mensions. Such 0-D models essentially attempt to follow
the evolution of the globally averaged air temperature at
surface as a result of changes in global radiative balance:

c
dT̄

dt
= Ri −Ro, (12a)

Ri = µQ0{1− α(T̄ )}, (12b)

Ro = σm(T̄ )(T̄ )4. (12c)

Here Ri and Ro are incoming solar radiation and out-
going terrestrial radiation. The heat capacity c is that of
the global atmosphere, plus that of the global ocean or
some fraction thereof, depending on the time scale of in-
terest: one might only include in c the ocean mixed layer
when interested in subannual time scales but the entire
ocean when studying paleoclimate (e.g., Saltzman, 2001).

The rate of change of T̄ with time t is given by dT̄ /dt,
while Q0 is the solar radiation received at the top of the
atmosphere, also called the “solar constant,” σ is the
Stefan-Boltzmann constant, and µ is an insolation pa-
rameter equal to unity for present-day conditions. To
have a closed, self-consistent model, the planetary re-
flectivity or albedo α and grayness factor m have to be

expressed as functions of T̄ ; m = 1 for a perfectly black
body and 0 < m < 1 for a grey body like planet Earth.

There are two kinds of one-dimensional (1-D) atmo-
spheric models, for which the single spatial variable is
latitude or height, respectively. The former are so-called
energy-balance models (EBMs), which consider the gen-
eralization of the model (2.1) for the evolution of surface-
air temperature T = T (x, t), say,

c(x)
∂T

∂t
= Ri −Ro +D. (13)

The terms Ri and Ro are similar to those given in
Eqs. (12b) and (12c) for the 0-D case above, but can
now be functions of the meridional coordinate x — lati-
tude, co-latitude, or sine of latitude — as well as of time
t and temperature T . The horizontal heat-flux term D
describes the convergence of the heat transport across lat-
itude belts; it typically contains first and second partial
derivatives of T with respect to x, while c(x) represents
the system’s space-dependent heat capacity.

Thus Eq. (13) corresponds physically to a nonlin-
ear heat or reaction–diffusion equation, and mathemat-
ically to a nonlinear parabolic partial differential equa-
tion. Hence the rate of change of local temperature T
with respect to time also becomes a partial derivative,
∂T (x, t)/∂t. Two such models were introduced indepen-
dently by Budyko (1969) in the then Soviet Union and
by Sellers (1969) in the United States.

snowball warm

V(T)

unstable

T

FIG. 20: Scalar double-well potential function V (T ); the
warm and the “deep-freeze” or snowball states correspond to

the system’s two stable fixed points, separated by an
unstable one.

The first striking results of theoretical climate dynam-
ics were obtained in showing that Eq. (13) could have two
stable steady-state solutions, depending on the value of
the insolation parameter µ, cf. Eq. (12b)4.

4 After the publication of the Budyko (1969) and Sellers (1969)
models, it became apparent that massive nuclear explosions
could induce a nuclear winter : namely, reducing the incoming
solar radiation by a dramatic increase in atmospheric particu-
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This multiplicity of stable steady states, or physically
possible stationary climates of our planet, can be ex-
plained, in its simplest form, already by the 0-D model
of Eq. (12). Note that the time derivative of the global
temperature T̄ in Eq. (12a) can be written as minus the
derivative of a potential V (T̄ ) = −

∫
{Ri(T̄ )−Ro(T̄ )}dT̄ ,

viz. dT̄ /dt = −dV (T̄ )/dT̄ . In the case of bistability, the
two local minima of V correspond to the stable solutions,
or fixed points, and the local maximum of V corresponds
to the unstable solution; see the sketch in Fig. 20.

The physical explanation resides in the fact that —
for a fairly broad range of µ-values around µ = 1.0 —
the curves for Ri and Ro as a function of T̄ intersect
in three points. One of these points corresponds to the
present climate (highest T̄ -value), and another one to
an ice-covered planet (lowest T̄ -value); both of these are
stable, while the third one, i.e. the intermediate T̄ -value
is unstable.

To obtain this result, it suffices to make two assump-
tions: (i) that α = α(T̄ ) in Eq. (12b) is a piecewise-linear
function of T̄ — or, more generally, a monotonically in-
creasing one with a single inflection point — with high
albedo at low temperature, due to the presence of snow
and ice, and low albedo at high T̄ , due to their absence;
and (ii) that m = m(T̄ ) in Eq. (12c) is a smooth, increas-
ing function of T̄ that captures in its simplest from the
“greenhouse effect” of trace gases and water vapor.

The EBM modelers (Ghil, 1976; Held and Suarez,
1974; North, 1975) called the ice-covered state a “deep
freeze.” The possibility of such a state in Earth history
was met with considerable incredulity by much of the
climate community, as incompatible with existing paleo-
climatic evidence at the time. Geochemical evidence led
in the early 1990s to the discovery of a snowball or, at
least, slushball Earth prior to the emergence of multicel-
lular life, 600 Myr B.P. (Hoffman et al., 2002; Hoffman
and Schrag, 2002). This discovery did not lead, however,
to more enthusiasm for the theoretical prediction of such
a state, almost two decades earlier.

The bifurcation diagram of an 1-D EBM, like the
one of Eq. (13), is shown in Fig. 21. It displays the
model’s mean temperature T̄ as a function of the frac-
tional change µ in the insolation Q0 = Q0(x) at the top
of the atmosphere. The ‘S’-shaped curve in the figure
arises from two back-to-back saddle-node bifurcations.

The normal form of the first one is

Ẋ = µ−X2. (14)

late matter could potentially trigger an even greater disaster for
life on Earth than nuclear war itself (e.g., Turco et al., 1983).
Studies to this effect have been influential in reducing the size
of the nuclear arsenals at the end of the Cold War. Strikingly,
the two contributions came almost simultaneously from scientists
belonging to the Cold War’s two opposing geopolitical blocks.

FIG. 21: Bifurcation diagram for the solutions of an
energy-balance model (EBM), showing the global-mean

temperature T̄ vs. the fractional change µ of insolation at
the top of the atmosphere. The arrows pointing up and

down at about µ = 1.4 indicate the stability of the branches:
towards a given branch if it is stable and away if it is

unstable. The other arrows show the hysteresis cycle that
global temperatures would have to undergo for transition

from the upper stable branch to the lower one and back. The
angle γ gives the measure of the present climate’s sensitivity

to changes in insolation. [After Ghil and Childress (1987)
with permission from Springer Science+Business Media.]

Here X stands for a suitably normalized form of T̄ and
Ẋ is the rate of change of X, while µ is a parameter
that measures the stress on the system, in particular a
normalized form of the insolation parameter in Eq. (12b).

The uppermost branch corresponds to the steady-state
solution X = +µ1/2 of Eq. (14) and it is stable. This
branch matches rather well Earth’s present-day climate
for µ = 1.0; more precisely the steady-state solution T =
T (x;µ) of the full 1-D EBM (not shown) matches closely
the annual mean temperature profile from instrumental
data over the last century (Ghil, 1976).

The intermediate branch starts out at the left as the
second solution, X = −µ1/2, of Eq. (14) and it is
unstable. It blends smoothly into the upper branch
of a coordinate-shifted and mirror-reflected version of
Eq. (14), say

Ẋ = (µ− µ0) + (X −X0)2. (15)

This branch, X = X0 + (µ0 − µ)1/2, is also unstable.
Finally, the lowermost branch in Fig. 21 is the second
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steady-state solution of Eq. (15), X = X0 − (µ0 − µ)1/2,
and it is stable, like the uppermost branch. The lower-
most branch corresponds to an ice-covered planet at the
same distance from the Sun as Earth.

The fact that the upper-left bifurcation point (µc, Tc)
in Fig. 21 is so close to present-day insolation values cre-
ated great concern in the climate dynamics community
in the mid-1970s, when these results were obtained. In-
deed, much more detailed computations (see below) con-
firmed that a reduction of about 2–5% of insolation values
would suffice to precipitate Earth into a “deep freeze.”
The great distance of the lower-right bifurcation point
(µd, Td) from present-day insolation values, on the other
hand, suggests that one would have to nearly double at-
mospheric opacity, say, for the Earth’s climate to jump
back to more comfortable temperatures.

The results above follow Ghil (1976). Held and Suarez
(1974) and North (1975) obtained similar results, and
a detailed comparison between EBMs appears in Chap-
ter 10 of Ghil and Childress (1987). Ghil (1976), rigor-
ously, and then North et al. (1979), numerically, pointed
out that a double-well potential, like the one sketched in
Fig. 20, does exist for higher-dimensional (North et al.,
1979) and even infinite-dimensional (Ghil, 1976) versions
of an EBM. In higher dimensional cases, the maximum
of the potential shown in Fig. 20 is replaced by a sad-
dle, or “mountain pass” (e.g., Ghil and Childress, 1987,
Sec. 10.4). In this case, dimensionality refers to phase
space, rather than physical space; see a more detailed
discussion in Sect. V.

B. Other Atmospheric Processes and Models

The 1-D atmospheric models in which the details of
radiative equilibrium are investigated with respect to a
height coordinate z (geometric height, pressure, etc.) are
often called radiative-convective models (Ramanathan
and Coakley, 1978). This name emphasizes the key role
that convection plays in vertical heat transfer. While
these models preceded historically EBMs as rungs on the
modeling hierarchy, it was only recently shown that they,
too, could exhibit multiple equilibria (Li et al., 1997).
The word “equilibrium,” here and in the rest of this ar-
ticle, refers simply to a steady state of the model, rather
than a to true thermodynamic equilibrium.

Two-dimensional (2-D) atmospheric models are also of
two kinds, according to the third space coordinate that
is not explicitly included. Models that resolve explicitly
two horizontal coordinates, on the sphere or on a plane
tangent to it, tend to emphasize the study of the dynam-
ics of large-scale atmospheric motions. They often have a
single layer or two. Those that resolve explicitly a merid-
ional coordinate and height are essentially combinations
of EBMs and radiative-convective models and emphasize
therewith the thermodynamic state of the system, rather

than its dynamics.

Yet another class of “horizontal” 2-D models is the
extension of EBMs to resolve zonal, as well as merid-
ional surface features, in particular land-sea contrasts.
We shall see in Sec. III.C.2 how such a 2-D EBM is used,
when coupled to an oceanic model.

Schneider and Dickinson (1974) and Ghil and Robert-
son (2000) discuss additional types of 1-D and 2-D at-
mospheric models and give references to these and to the
types discussed above, along with some of their main ap-
plications. Finally, to encompass and resolve the main
atmospheric phenomena with respect to all three spatial
coordinates, as discussed in Sect. II.D, GCMs occupy the
pinnacle of the modeling hierarchy (e.g., Randall, 2000).

The mean zonal temperature’s dependence on the in-
solation parameter µ — as obtained for 1-D EBMs and
shown in Fig. 21 here — was confirmed, to the extent pos-
sible, by using a simplified GCM, coupled to a “swamp”
ocean model (Wetherald and Manabe, 1975). More pre-
cisely, forward integrations with a GCM cannot confirm
the presence of the intermediate, unstable branch. Nor
was it possible in the mid-70s, when this numerical ex-
periment was carried out, to reach the deep-freeze stable
branch, as it was called at the time, because of the GCM’s
computational limitations.

Still, the normal form of the saddle-node bifurcation,
given by Eq. (14), suggests a parabolic shape of the up-
per, present-day–like branch near the upper-left bifurca-
tion point in our figure, namely (µc, Tc). This parabolic
shape is characteristic of the dependence of a variable
that represents the model solution on a parameter that
represents the intensity of the forcing in several types of
bifurcations; moreover, this shape is not limited to the
bifurcation’s normal form, like Eqs. (14) or (15), but is
much more general. The GCM simulations supported
quite well a similar shape for the globally averaged tem-
perature profiles of the GCM’s five vertical layers, cf.
Wetherald and Manabe (1975, Fig. 5). See discussion
below in Sects. IV.E.5 and V.

Ghil and Robertson (2000) also describe the separate
hierarchies that have grown over the last quarter-century
in modeling the ocean and the coupled ocean–atmosphere
system. More recently, an overarching hierarchy of Earth
system models — that encompass all the subsystems of
interest, atmosphere, biosphere, cryosphere, hydrosphere
and lithosphere — has been developing. Eventually, the
partial results about each subsystem’s variability, out-
lined in this section and the next one, will have to be
verified from one rung to the next of the full Earth sys-
tem modeling hierarchy.



31

FIG. 22: Schematic diagram of an Atlantic meridional
cross section from North Pole (NP) to South Pole (SP),
showing mechanisms likely to affect the thermohaline
circulation (THC) on various time-scales. Changes in
the radiation balance Rin −Rout are due, at least in

part, to changes in extent of Northern Hemisphere (NH)
snow and ice cover V , and to how these changes affect

the global temperature T ; the extent of Southern
Hemisphere ice is assumed constant, to a first
approximation. The change in hydrologic cycle

expressed in the terms Prain − Pevap for the ocean and
Psnow − Pabl for the snow and ice is due to changes in

ocean temperature. Deep-water formation in the North
Atlantic Subpolar Sea (North Atlantic Deep Water:
NADW) is affected by changes in ice volume and
extent, and regulates the intensity C of the THC;

changes in Antarctic Bottom Water (AABW) formation
are neglected in this approximation. The THC intensity
C in turn affects the system’s temperature, and is also
affected by it. [After Ghil et al. (1987) with permission

from Springer Nature.]

C. Oscillations in the Oceans’ Thermohaline Circulation

1. Theory and Simple Models

Historically, the thermohaline circulation (THC) (e.g.,
Dijkstra and Ghil, 2005; Kuhlbrodt et al., 2007) was first
among the climate system’s major processes to be stud-
ied using a very simple mathematical model. Stommel
(1961) formulated a two-box model and showed that it
possesses multiple equilibria.

A sketch of the Atlantic Ocean’s THC and its interac-
tions with the atmosphere and cryosphere on long time
scales is shown in Fig. 22. These interactions can lead to
climate oscillations with multi-millennial periods, such
as the Heinrich events (e.g., Ghil, 1994, and references
therein), and are summarized in the figure’s caption. An
equally schematic view of the global THC is provided
by the widely known “conveyor belt” (Broecker, 1991)
diagram. The latter diagram captures greater horizon-
tal, 2-D detail but it does not commonly include the
THC’s interactions with water in both its gaseous and
solid phases, which our Fig. 22 here does include.

Basically, the THC is due to denser water sinking,
lighter water rising, and water mass continuity closing
the circuit through near-horizontal flow between the ar-
eas of rising and sinking5 effects of temperature T and
salinity S on the ocean water’s density, ρ = ρ(T, S), op-
pose each other: the density ρ decreases as T increases
and it increases as S increases. It is these two effects
that give the thermohaline circulation its name, from the
Greek words for T and S. In high latitudes, ρ increases
as the water loses heat to the air above and, if sea ice
is formed, as the water underneath is enriched in brine.
In low latitudes, ρ increases due to evaporation but de-
creases due to sensible heat flux into the ocean.

For the present climate, the temperature effect is
stronger than the salinity effect, and ocean water is ob-
served to sink in certain areas of the high-latitude North
Atlantic and Southern Ocean — with very few and lim-
ited areas of deep-water formation elsewhere — and to
rise everywhere else. Thus, in a thermohaline regime, T
is more important than S and hence comes before it.

During certain remote geological times, deep water
may have formed in the global ocean near the equator;
such an overturning circulation of opposite sign to that
prevailing today has been dubbed halothermal, S before
T . The quantification of the relative effects of T and
S on the oceanic water masses’ buoyancy in high and
low latitudes is far from complete, especially for paleo-
circulations; the association of the latter with salinity
effects that exceed the thermal ones (e.g., during the
Palaeocene, ' 57 Myr ago, cf. Kennett and Stott, 1991)
is thus rather tentative.

To study the reversal of the abyssal circulation, due to
the opposite effects of T and S, Stommel (1961) consid-
ered a model with two pipes connecting two boxes. He
showed that the system of two nonlinear, coupled ordi-
nary differential equations that govern the temperature
and salinity differences between the two well-mixed boxes
has two stable steady-state solutions; these two steady
states are distinguished by the direction of flow in the
upper and the lower pipe.

Stommel’s paper was primarily concerned with distinct
local convection regimes, and hence vertical stratifica-
tions, in the North Atlantic and the Mediterranean or the
Red Sea, say. Today, we mainly think of one box as repre-
senting the low latitudes and the other one the high lati-
tudes in the global THC (Marotzke, 2000, and references
therein). Subsequently, many other THC models that
used more complex box-and-pipe geometries have been
proposed and studied (e.g., Lucarini and Stone, 2005;
Rooth, 1982; Scott et al., 1999; Titz et al., 2002).

5 A complementary point of view suggests, instead, that surface
winds and tides play a major role in the driving and maintenance
of the large-scale ocean circulation (Wunsch, 2002, 2013).
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The next step in the hierarchical modeling of the THC
is that of 2-D meridional-plane models, in which the tem-
perature and salinity fields are governed by coupled non-
linear partial differential equations with two independent
space variables, latitude and depth, say (e.g., Cessi and
Young, 1992; Lucarini et al., 2005a, 2007; Quon and Ghil,
1992). Given boundary conditions for such a model that
are symmetric about the Equator, as the equations them-
selves are, one expects a symmetric solution, in which wa-
ter either sinks near the poles and rises everywhere else
(thermohaline) or sinks near the Equator and rises every-
where else (halothermal). These two symmetric solutions
would correspond to the two equilibria of the Stommel
(1961) two-box model; see Thual and McWilliams (1992)
for a discussion of the relationship between 2-D and box
models.

In fact, symmetry breaking can occur, leading grad-
ually from a symmetric two-cell circulation to an anti-
symmetric one-cell circulation. In between, all degrees
of dominance of one cell over the other are possible. A
situation lying somewhere between the two seems to re-
semble most closely the meridional overturning diagram
of the Atlantic Ocean in Fig. 22.

The gradual transition is illustrated by Fig. 23 and it
can be described by a pitchfork bifurcation, cf. Dijkstra
and Ghil (2005):

Ẋ = f(X;µ) = µX −X3. (16)

Here X stands for the asymmetry amount in the solution,
so that X = 0 is the symmetric branch, and µ measures
the stress on the system, in particular a normalized form
of the buoyancy flux at the surface. For µ < 0 the sym-
metric branch is stable, while for µ > 0 the two branches
X = ±µ1/2 inherit its stability.

In the 2-D THC problem, the left cell dominates on
one of the two branches, while the right cell dominates on
the other: for a given value of µ, the two stable steady-
state solutions — on the {X = +µ1/2} branch and on
the {X = −µ1/2} branch, respectively — are mirror im-
ages of each other. The idealized THC in Fig. 22, with
the North Atlantic Deep Water extending to the South-
ern Ocean’s polar front, corresponds to one of these two
branches. In theory, therefore, a mirror-image circula-
tion, with the Antarctic Bottom Water extending to the
North Atlantic’s polar front, is equally possible.

2. Bifurcation Diagrams for GCMs

Bryan (1986) was the first to document transition from
a two-cell to a one-cell circulation in a simplified ocean
GCM with idealized, symmetric forcing. In Sect. III.B at-
mospheric GCMs confirmed essentially the EBM results.
Results of coupled ocean–atmosphere GCMs, however,
have led to questions about the realism of more than one
stable THC equilibrium. The situation with respect to

FIG. 23: Transition from a symmetric to an
increasingly asymmetric meridional ocean circulation.

The streamfunction plots represent results from an
idealized 2-D model of thermosolutal convection in a

rectangular domain, for a prescribed value of the
Rayleigh number and increasing values of the

nondimensional intensity γ of the salinity flux at the
surface. (a) γ = 0.40; (b) γ = 0.50: and (c) γ = 0.55.
[After Quon and Ghil (1992) with permission from

Cambridge University Press.]

the THC’s pitchfork bifurcation (16) is thus subtler than
it was with respect to Fig. 21 for radiative equilibria.

Dijkstra (2007) showed, however, by comparing obser-
vational and reanalysis data with high-end ocean GCMs,
that the current Atlantic Ocean’s THC is actually in its
multiple-equilibria regime. Climate models of intermedi-
ate complexity did indeed find the Atlantic Ocean to be
multistable (e.g., Rahmstorf et al., 2005), while several
of the GCMs used in recent IPCC ARs did not show such
a behavior, with an exception coming from the study by
Hawkins et al. (2011); see Fig. 24. Thus a failure of high-
end models in the hierarchy to confirm results obtained
on the hierarchy’s lower rungs does not necessarily imply
it is the simpler models that are wrong. To the contrary,
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Time scale Phenomena Mechanism

Decadal · Local migration of surface anomalies. in
the NW corner of the ocean basin

· Localized surface density anomalies due to
surface coupling

· Gyre advection in mid-latitudes · Gyre advection

Centennial Loop-type, meridional circulation Conveyor-belt advection of density anoma-
lies

Millennial Relaxation oscillation, with “flushes” and
superimposed decadal fluctuations

Bottom water warming, due to strong brak-
ing effect of salinity forcing

TABLE I: Oscillations in the oceans’ thermohaline circulation. See also Ghil (1994).

such a failure might well indicate that the high-end mod-
els, no matter how detailed, may still be rather imperfect;
see also Ghil (2015) for a summary.

Internal variability of the THC — with smaller and
more regular excursions than the huge and totally irreg-
ular jumps associated with bistability — was studied in-
tensively in the late 1980s and the 1990s. These studies
placed themselves on various rungs of the modeling hier-
archy, from box models through 2-D models and all the
way to ocean GCMs. A summary of the different kinds
of oscillatory variability found in the latter appears in
Table I6. Such oscillatory behavior seems to match more
closely the instrumentally recorded THC variability, as
well as the paleoclimatic records for the recent geological
past, than bistability.

The (multi)millennial oscillations interact with vari-
ability in the surface features and processes shown in
Fig. 22. Chen and Ghil (1996), in particular, studied
some of the interactions between atmospheric processes
and the THC. They used a so-called hybrid coupled
model, namely a 2-D EBM, coupled to a rectangular-
box version of the North Atlantic rendered by a low-
resolution ocean GCM. This hybrid model’s regime di-
agram is shown in Fig. 25(a). A steady state is stable
for higher values of the coupling parameter λao or of the
EBM’s diffusion parameter d. Interdecadal oscillations
with a period of 40–50 years are self-sustained and stable
for lower values of these parameters.

The self-sustained THC oscillations in question are
characterized by a pair of vortices of opposite sign that
grow and decay in quadrature with each other in the
ocean’s upper layers. Their centers follow each other
anti-clockwise through the northwestern quadrant of the
model’s rectangular domain. Both the period and the
spatio-temporal characteristics of the oscillation are thus
rather similar to those seen in a fully coupled GCM with
realistic geometry (Delworth et al., 1993). The transi-
tion from a stable equilibrium to a stable limit cycle, via
Hopf bifurcation, in this hybrid coupled model, is shown

6 Anomalies in the table are defined as the difference between the
monthly mean value of a variable and its climatological mean.

in Fig. 25(b), and we will further elaborate upon it in
Sect. III.D.2 below.

D. Bistability, Oscillations and Bifurcations

In Sects. III.A, III.B and III.C.1, we have introduced
bistability of steady-state solutions via saddle-node and
pitchfork bifurcations, while in Sect. III.C.2, we men-
tioned oscillatory solutions and Hopf bifurcation as the
typical way the latter are reached as a model parame-
ter changes. We start this subsection by summarizing
the bifurcations of steady-state solutions, often referred
to as equilibria, and will then introduce and discuss the
normal forms of Hopf bifurcation, both supercritical and
subcritical.

1. Bistability and Steady-State Bifurcations

Section III.B introduced EBMs and explained how the
present climate and a totally ice-covered Earth can result
as coexisting stable steady states over a certain parame-
ter range. The normal forms of a supercritical and a sub-
critical saddle-node bifurcation were given as Eqs. (14)
and (15), respectively. Here the criticality is defined as
the existence of the two equilibria, stable an unstable, to
the right or the left of the critical or bifurcation point.

An S-shaped bifurcation curve, such as the one that
appears in Fig. 21 for the 1-D EBM of Eq. (13), can be
obtained easily by soldering smoothly together the back-
to-back saddle-node bifurcations of Eqs. (14) and (15).
While there is no generic normal form for such a curve,
here is a simple example:

Ẋ = µ−X2, (17a)

Ẋ = (µ− µ0) + (X −X0)2, (17b)

with µ0 = 1 and X0 = −1/2.
Note that both the sub- and supercritical saddle-node

bifurcations are structurally stable, i.e. they persist as the
system of evolution equations, be it a system of ordinary
or partial differential equations, is smoothly perturbed
(Andronov and Pontryagin, 1937; Arnold, 2003; Guck-
enheimer and Holmes, 1983; Temam, 1997) by a small
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(a) Intermediate-complexity models

(b) IPCC-class climate model

FIG. 24: Multistability of the THC for (a) Earth models of
intermediate complexity, reproduced with permission from
Rahmstorf et al. (2005); and (b) for an IPCC-class climate

model, reproduced with permission from Hawkins et al.
(2011). Parameter controlling the freshwater input in the

North Atlantic basin on the abscissa and the THC’s
intensity on the ordinate.

amount. This robustness is the reason why saddle-node
bifurcations — and other elementary bifurcations called
of co-dimension one, i.e., depending on a single parame-
ter, like the Hopf bifurcation — are so important and can,
in practice, be a guide through the hierarchy of models,
in the climate sciences and elsewhere. A striking example
was provided in Sect. III.B for the supercritical saddle-
node bifurcation that can be found in the 3-D GCM of
Wetherald and Manabe (1975, Fig. 5), as well as the 1-D
EBM reproduced in Fig. 21 herein.

The next kind of bifurcation that leads to bistability of
stationary states is the pitchfork bifurcation introduced
in Sect. III.C.1, in connection with the THC, and whose
normal form is given by Eq. (16). This bifurcation, how-
ever, only arises in the presence of a mirror symmetry
in the model under study, such as seen in Fig. 23a. One

suspects, therefore, that it is nor structurally stable with
respect to perturbations of the dynamics that do not pre-
serve this symmetry.

A simple example is given by the following perturbed
pitchfork bifurcation:

Ẋ = f(X;µ, ε) = X(µ−X2) + ε, (18)

where ε is a small parameter. The bifurcation diagrams
for ε = 0 and ε = +0.1 are given in Figs. 26(a,b), respec-
tively. Clearly, a nonzero value of ε breaks the X → −X
symmetry of Eq. (16), since it is no longer the case that
f(X) = f(−X); hence the pitchfork breaks up into a con-
tinuous uppermost branch that is stable for all X-values,
and a supercritical saddle-node bifurcation, whose lower
branch is stable. If ε < 0, it will be the lowermost branch
that is stable for all X-values (not shown), and the up-
per branch of the saddle-node bifurcation above it that
is stable. In both cases, above a critical value associated
with the saddle-node bifurcation, three solution branches
exist, with the middle one that is unstable and the other
two that are stable.

An obvious way that the symmetric pitchfork bifurca-
tion present in 2-D models of the THC can be broken, as
illustrated in Fig. 26, is simply by considering 3-D mod-
els with zonally asymmetric basin boundaries. Perturbed
pitchfork bifurcations were also found in shallow-water
models of the wind-driven ocean circulation (e.g., Ghil,
2017; Jiang et al., 1995b; Speich et al., 1995b).

2. Oscillatory Instabilities and Hopf Bifurcations

In spite of the considerable detail and 3-D character
of the ocean GCM involved in the hybrid coupled model
of Chen and Ghil (1996), it is clear that the numerically
obtained bifurcation diagram in Fig. 25b is of a very sim-
ple, fundamental type. The normal form of such a Hopf
bifurcation is given by

ż = (µ+ iω)z + c(zz̄)z, (19)

where z = x + iy is a complex variable, while c and ω
are nonnegative and µ is a real parameter. Clearly, for
small z, this equation describes a rotation in the complex
plane with an increasing radius |z| when µ > 0, i.e., it
contains the possibility of an oscillatory instability, while
the cubic term corresponds to an increasing modification
of this simple rotation away from the origin.

The parsimonious complex notation above follows
Arnold (1983) and Ghil and Childress (1987) and is, we
believe, more suggestive and transparent than the more
common one that uses separately the two real variables
x and y (e.g., Guckenheimer and Holmes, 1983). The
advantages of the former are apparent when introducing
polar variables via z = ρ1/2eiθ, with ρ = zz̄ ≥ 0. One can
then separate the flow induced by Eq. (19) into a constant
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a) Regime diagram

b) Bifurcation diagram

a) Regime diagram

b) Bifurcation diagram

(a) Regime diagram (b) Bifurcation diagram

FIG. 25: Dependence of THC solutions on two parameters in a hybrid coupled model; the two parameters are the
atmosphere–ocean coupling coefficient λao and the atmospheric thermal diffusion coefficient d. (a) Schematic regime diagram.

The full circles stand for the model’s stable steady states, the open circles for stable limit cycles, and the solid curve is the
estimated neutral stability curve between the former and the latter. (b) Hopf bifurcation curve at fixed d = 1.0 and varying
λao; this curve was obtained by fitting a parabola to the model’s numerical-simulation results, shown as full and open circles.

[From Chen and Ghil (1996) with permission from the American Meteorological Society.]

rotation with angular velocity ω and a radius r = ρ1/2

that either increases or decreases as ρ̇ ≷ 0, according to

ρ̇ = 2ρ(µ+ cρ), (20a)

θ̇ = ω. (20b)

Equation (20a) is quadratic in ρ and has the two roots
ρ = 0 and ρ = −µ/c. The former corresponds to a fixed
point at the origin z = 0 in Eq. (19), while the latter only
exists when cµ < 0.

We thus anticipate a solution that is a circle with ra-
dius r = (−µ/c)1/2 when cµ 6= 0 and the two param-
eters have opposite signs. The simpler case is that of
the nonzero radii given by Eq. (20a) for positive stability
parameter µ and negative saturation parameter c: it cor-
responds to the supercritical Hopf bifurcation sketched in
Fig. 27a. In this case, the stable fixed point at the origin
loses its stability as µ changes sign, and transmits it to
a limit cycle of parabolically increasing radius.

The opposite case, of c > 0, is plotted in Fig. 27b:
it corresponds to subcritical Hopf bifurcation. Here, in
fact, the stability of the fixed point is also lost at µ = 0
but there is no oscillatory solution for µ > 0 at all, since
the higher-order terms in either Eq. (19) or (20a) cannot
stabilize the linearly unstable oscillatory solution, which
spirals out to infinity. It is not just that the parabolas
in Figs. 27a and 27b point in opposite directions, as for
the saddle-node bifurcations in Eqs. (17a) and (17b) or
Eqs. (14) and (15), but the two figures are topologically
distinct.

E. Main Modes of Variability

The atmosphere, ocean, and the coupled ocean–
atmosphere climate system have many modes of variabil-
ity, as initially discussed in Sects. II.A-II.B-II.C. We re-
view here some of the most important ones, and comment
on the general features of such modes.

1. Modes of Variability and Extended-Range Prediction

Several large-scale spatial patterns of atmospheric co-
variability have been studied, starting in the second half
of the 19th century. Lorenz (1967) and Wallace and Gut-
zler (1981) provided good reviews of the earlier studies.
The earliest work tended to emphasize “centers of ac-
tion,” where the variability is strongest (Teisserenc de
Bort, 1881), while more recently, it is so-called telecon-
nections between such centers of action that have been
emphasized. J. Namias (1910–1997) played a key role in
developing the interest in such teleconnections, by apply-
ing systematically the use of their spatio-temporal prop-
erties to the development of operational extended-range
weather forecasting (e.g., Namias, 1968).

Returning to the discussion of prediction in Sect. II.D,
it is important to recall John von Neumann’s (1903–
1957) important distinction (Von Neumann, 1960) be-
tween weather and climate prediction. To wit, short-term
NWP is the easiest — i.e., it is a pure initial-value prob-
lem; long-term climate prediction is next easiest — it
corresponds to studying the system’s asymptotic behav-
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FIG. 26: Bifurcation diagram of the pitchfork bifurcation in
Eq. (18), (a) for ε = 0; and (b) for ε = 0.1. Solid lines

indicate stable solutions, and dashed lines indicate unstable
ones. [After Dijkstra and Ghil (2005) with permission from

Elsevier.]

ior; while intermediate-term prediction is hardest — both
initial and boundary values are important. Von Neu-
mann’s role in solving the NWP problem by integrating
the discretized equations that govern large-scale atmo-
spheric motions (Bjerknes, 1904; Charney et al., 1950b;
Richardson, 1922) is well known. In fact, he also played a
key role in convening the conference on the “Dynamics of
Climate” that was held at Princeton’s Institute for Ad-
vanced Studies in October 1955, and whose proceedings
(Pfeffer, 1960) were finally published three years after

Von Neumann’s untimely death.
Today, routine NWP is quite skillful for several days,

but we also know that detailed prediction of the weather
is limited in theory by the exponential growth of small
errors (Lorenz, 1963) and by their turbulent cascading
from small to large scales (Leith and Kraichnan, 1972;
Lorenz, 1969a,b; Thompson, 1957). The theoretical limit
of detailed prediction — in the sense of predicting future
values of temperature, wind and precipitation at a certain
point, or within a small volume, in time and space — is
of the order of 10–15 days (Epstein, 1988; Tribbia and
Anthes, 1987).

In the sense of Von Neumann (1960), short-term pre-
diction is being improved by meteorologists and oceanog-
raphers through more-and-more accurate discretization
of the governing equations, increased horizontal and ver-
tical resolution of the numerical models, improved ob-
servations and data assimilation methodologies, and im-
proved parametrization of subgrid-scale processes.

Important strides in solving the theoretical problems
of the climate system’s asymptotic behavior are being
taken by the use of idealized models — either by sim-
plifying the governing equations in terms of the num-
ber of subsystems and of active physical processes, e.g.,
by eliminating phase transitions or chemical processes in
the atmosphere — or by systematic model reduction to
small or intermediate-size sets of ordinary differential or
stochastic differential equations (e.g., Chang et al., 2015;
Palmer and Williams, 2009). We shall return to the latter
in Sects. IV and V.

What, then, if anything, and how, and how accu-
rately can climate-related scalars or fields be predicted
beyond the limits of NWP? In other words, what can be
done about the gap between short-term and asymptotic
prediction of climate? These issues have been actively
pursued for the last three decades (e.g., Epstein, 1988;
Ghil and Robertson, 2002; Tribbia and Anthes, 1987, and
many others). Atmospheric, oceanic and coupled modes
of variability play an important role in extended- and
long-range forecasting.

The key idea is that a mode that is stationary or os-
cillatory can, by its persistence or periodicity, contribute
a fraction of variance that is predictable for the mode’s
characteristic time or, at least, for a substantial fraction
thereof. We start therefore with a brief review of some
of the most promising modes of variability.

2. Coupled Atmosphere–Ocean Modes of Variability

The best known of all these modes is the El Niño–
Southern Oscillation (ENSO: Dijkstra, 2005; Philan-
der, 1990, and references therein), mentioned earlier in
Sect. II.B. The ENSO phenomenon is particularly strong
over the Tropical Pacific, but it affects temperatures
and precipitations far away and over a large area of
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(a) supercritical Hopf (b) subcritical Hopf

FIG. 27: Bifurcation diagram of the Hopf bifurcation in Eq. (19): (a) supercritical Hopf bifurcation for c = −1; and (b)
subcritical Hopf bifurcation for c = +1. Solid lines indicate stable solutions (s), and dashed lines indicate unstable ones (u); it

is common to plot |z| = −µ1/2 along with |z| = µ1/2, in order to emphasize that one is actually projecting onto the

(|z|, µ)-plane a paraboloid-shaped, one-parameter family of limit cycles with given r = |z| = µ1/2 and 0 ≤ θ < 2π. [After Ghil
and Childress (1987) with permission from Springer Science+Business Media.]

FIG. 28: Teleconnection pattern for a warm ENSO
episode, during the boreal winter months

December-January-February. Both colors and labels
indicate warm-vs.-cold and wet-vs.-dry anomalies, with

anomalies being defined as the difference between a
monthly mean value of a variable and its climatological

mean. [Reproduced, with permission, from https:

//www.meted.ucar.edu/ams/wim_2014/9b.html.]

the globe. Some of the best documented and statisti-
cally most significant ones of these teleconnections are
illustrated in Fig. 28. Just as an example, destructive
droughts over Northeast Brazil, Southeast Africa or cold
spells over Florida are often associated with particularly
strong warm ENSO episodes.

Such strong episodes recurred every 2–7 years during
the instrumental record of roughly 150 years, and the

ENSO phenomenon, with it alternation of warm episodes
(El Niños) and cold ones (La Niñas), is quite irregular.
Still, there is a marked tendency for year-to-year alter-
nation of, not necessarily strong, El Niños and La Niñas;
this alternation is associated with a well-known quasi-
biennial near-periodicity (e.g., Ghil et al., 2002; Rasmus-
son et al., 1990).

Even larger variance, accompanied by lesser regular-
ity, is associated with a quasi-quadrennial mode (Ghil
et al., 2002; Jiang et al., 1995a), sometimes just called
the low-frequency ENSO mode. The positive interfer-
ence of these two modes generates large ENSO events
that visually coincide with the instrumentally recorded
ones (Jiang et al., 1995a, Fig. 9).

These ENSO features have been used since 1992 for
real-time forecasting that essentially relies on predicting
the oscillatory modes of two scalar indices that capture
much of the ENSO variability, namely the Southern Os-
cillation Index (SOI) and the so-called Niño-3 index, ob-
tained by averaging mean-monthly sea surface tempera-
tures (SSTs) over an area of the Eastern Tropical Pacific.
For the time being, such a data-driven forecast appears
to still be quite competitive with those made by high-end,
detailed GCMs (Barnston et al., 2012).

3. Atmospheric Low-Frequency Variability (LFV)

As discussed in Sect. II.A, datasets for the atmosphere
are both longer and more plentiful than for the oceans.
Thus, there are quite a few modes of variability that have
been detected and described, especially for the Northern
Hemisphere, where both the human population and the

https://www.meted.ucar.edu/ams/wim_2014/9b.html
https://www.meted.ucar.edu/ams/wim_2014/9b.html
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data sets are denser.
As discussed in Sect. II.B, in connection with Fig. 12,

atmospheric phenomena are designated as having low,
or intraseasonal, frequency if their characteristic time is
longer than the life cycle of a mid-latitude weather sys-
tem but still shorter than a season. We are thus talking
here of intrinsic variability, as opposed to the externally
forced seasonal cycle, the latter being easier to under-
stand. More recently, one is also referring to this vari-
ability as subseasonal (e.g., Robertson and Vitart, 2018).

There are essentially two approaches for describing this
intrinsic, subseasonal variability: (i) as being episodic or
intermittent, and (ii) as being oscillatory. The two ap-
proaches are complementary, as we shall see, and they
have been dubbed the ‘particle’ vs. the ‘wave’ descrip-
tion, by a crude analogy with quantum mechanics (Ghil
and Robertson, 2002).

The key ingredient of the particle approach is provided
by so-called persistent anomalies or regimes. The best
known among these are blocking vs. zonal flow, which
were already mentioned in Sect. II.B. Other well-known
persistent features, especially during boreal winter, are
the positive and negative phase of the North Atlantic Os-
cillation (NAO) and the Pacific North American (PNA)
pattern. A rich literature exists on the reliable identifi-
cation, description and modeling of these patterns; see
Ghil et al. (2018, and references therein). In the South-
ern Hemisphere, there has also been some interest in an
approximate counterpart of the PNA, called the Pacific
South American (PSA) pattern (Mo and Ghil, 1987).

The key ingredient of the wave approach is provided
by oscillatory modes that do not necessarily possess ex-
act periodicities, but rather the broad spectral peaks that
were illustrated in Fig. 12 and discussed already to some
extent in Sect. II.B. Probably the best known example of
this type in the subseasonal band is the Madden-Julian
Oscillation (MJO: Madden and Julian, 1971). It has a
near-periodicity of roughly 50 days and affects winds and
precipitation in the Tropics, being strongest in the Indo-
Pacific sector. Like the much lower-frequency ENSO phe-
nomenon, important extratropical effects have been doc-
umented (e.g., Maloney and Hartmann, 2000).

In spite of the considerable amount of observational,
theoretical and modeling work dedicated to the MJO, it
is still incompletely understood and not very well simu-
lated or predicted. Some of the reasons for these difficul-
ties include the key role played in its mechanism by tran-
sitions among liquid and gaseous phases of water in trop-
ical clouds, its multiscale character, and the pronounced
interactions with the oceans (Zhang, 2005).

Two extratropical modes in the subseasonal band are
the Branstator (1987)–Kushnir (1987) wave, and the 40-
day mode associated with the topographic instability first
described by Charney and DeVore (1979) in a low-order
model. The Branstator-Kushnir wave is, like the MJO,
an eastward traveling wave, while the 40-day mode is a

standing wave anchored by the topography.
Charney and DeVore (1979) emphasized the bimodal-

ity of the solutions of a model version with only three
Fourier modes — one stable steady state being zonal and
the other being blocked — and did not pursue further the
fact that, in a more highly resolved version of the model,
oscillatory solutions did appear. M. Ghil and associates
did clarify the role of the higher meridional modes in
the Hopf bifurcation that gives rise to the oscillatory so-
lutions (Ghil and Childress, 1987; Jin and Ghil, 1990;
Legras and Ghil, 1985). The potential role of these re-
sults in the controversy surrounding the effect of anthro-
pogenic polar amplification on blocking frequency was
mentioned in Sect. II.B.2.

While clearly mid-latitude weather systems, like the
tropical ones, also involve precipitation, their large-scale
properties seem to be much less affected by wet processes;
the former arise essentially from purely dynamical, as op-
posed to largely thermodynamical mechanisms. For the
sake of simplicity, we will thus try to illustrate in further
detail the complementarity of the wave and the particle
approach for the extratropical topographic oscillation.

Given the recent interest in the physical literature for
synchronization in continuous media, cf. Duane et al.
(2017) and references therein, it might be challenging
to this readership that one can accomodate in a fairly
narrow frequency band, between roughly 0.1 and 0.01
day−1, three distinct oscillatory modes that do not seem
to synchronize: in the Tropics the MJO, with a period
' 50 days, and in mid-latitudes the Branstator-Kushnir
wave, with a period ' 30 days, along with the topo-
graphic oscillatory mode, with a period ' 40 days; see,
for instance, Dickey et al. (1991, Fig. 11). Not only are
these three frequencies fairly close. i.e., the detuning
fairly small, but the characteristic wave lengths of all
three of these oscillatory modes are quite large with re-
spect to the radius of the Earth, and several telecon-
nections mentioned so far extend across continents and
oceans, cf. Fig. 28 herein.

Be that as it may, let us now concentrate on the topo-
graphic ‘wave’ mode and its relationship with the block-
ing and zonal ‘particles’. Ghil et al. (2018) recently re-
viewed the evidence provided by a hierarchy of models for
the presence of a Hopf bifurcation that arises from the in-
teraction of the large-scale westerly flow in mid-latitudes
with the topography of the Northern Hemisphere.

Certain spatial features of the phases of this mode
do present striking similarities to the blocked and zonal
flows that appear not just as the two stable equilibria
in the highly idealized model of Charney and DeVore
(1979), but also as unstable, though long-lived, patterns
in much more realistic models, like the three-level, quasi-
geostrophic (QG3) model originally formulated by Mar-
shall and Molteni (1993). The latter model is still widely
used to study the nonlinear dynamics of large-scale, mid-
latitude atmospheric flows (e.g., Kondrashov et al., 2004;
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Lucarini and Gritsun, 2019).

More broadly, we summarize here the relevant conclu-
sions of the Ghil et al. (2018) review paper on the obser-
vational, theoretical and modeling literature of multiple
regimes and oscillatory modes of subseasonal variability.
Four complementary approaches to explaining this vari-
ability are illustrated in Fig. 29.

(d) Red noise

(a)

(b) (c)

FIG. 29: Schematic overview of atmospheric
low-frequency variability (LFV) mechanisms; see text
for details. Reproduced from Ghil et al. (2018), with

permission from Elsevier.

One approach to persistent anomalies in mid-latitude
atmospheric flows on subseasonal time scales is to con-
sider them simply as due to slowing down of Rossby
waves or to their linear interference (Lindzen, 1986). This
approach is illustrated in the sketch labeled (c) within the
figure: zonal flow Z and blocked flow B are simply slow
phases of an harmonic oscillation, like the neighborhood
of t = π/2 or t = 3π/2 for a sine wave sin(t); or else they
are due to an interference of two or more linear waves,
like the one occurring for a sum A sin(t) +B sin(3t) near
t = (2k + 1)π/2. A more ambitious, quasi-linear version
of this approach is to study long-lived resonant wave tri-
ads between a topographic Rossby wave and two free
Rossby waves (Egger, 1978; Ghil and Childress, 1987;
Trevisan and Buzzi, 1980). Neither version of this line of
thought, though, explains the organization of the persis-
tent anomalies into distinct flow regimes.

Rossby et al. (1939) initiated a different, genuinely
nonlinear approach by suggesting that multiple equi-
libria may explain preferred atmospheric flow patterns.
These authors drew an analogy between such equilibria
and hydraulic jumps, and formulated simple models in
which similar transitions between faster and slower at-
mospheric flows could occur. This multiple-equilibria ap-
proach was then pursued vigorously in the 1980s (Char-
ney and DeVore, 1979; Charney et al., 1981; Ghil and
Childress, 1987; Legras and Ghil, 1985) and it is illus-
trated in Fig. 29 by the sketch labeled (a): one version
of the sketch illustrates models that concentrated on the
B–Z dichotomy (Benzi et al., 1986b; Charney and De-
Vore, 1979; Charney et al., 1981), the other on models

(e.g., Legras and Ghil, 1985) that allowed for the pres-
ence of additional clusters, found by Kimoto and Ghil
(1993a) and Smyth et al. (1999), among others, in obser-
vations. The latter include opposite phases of the NAO
and PNA anomalies (PNA,RNA and BNAO in sketch
(a) of Fig. 29). The LFV dynamics in this approach is
given by the preferred transition paths between the two
or more regimes; see again Table 1 in Ghil et al. (2018)
and references therein.

A third approach is associated with the idea of oscil-
latory instabilities of one or more of the multiple fixed
points that can play the role of regime centroids. Thus,
(Legras and Ghil, 1985) found a 40-day oscillation aris-
ing by Hopf bifurcation off their blocked regime B, as
illustrated in sketch (b) of the figure.

An ambiguity arises, though, between this point of
view and the complementary possibility that the regimes
are just slow phases of such an oscillation, caused itself by
the interaction of the mid-latitude jet with topography
that gives rise to a supercritical Hopf bifurcation. Thus,
Kimoto and Ghil (1993a,b) found, in their observational
data, closed paths within a Markov chain whose states re-
semble well-known phases of an intraseasonal oscillation.
Such a possibility was confirmed in the QG3 model by
Kondrashov et al. (2004). Furthermore, multiple regimes
and intraseasonal oscillations can coexist in a two-layer
model on the sphere within the scenario of “chaotic itin-
erancy” (Itoh and Kimoto, 1996, 1997). Lucarini and
Gritsun (2019) find that different regimes might be asso-
ciated with different bundles of unstable periodic orbits
populating densely the system’s attractor.

Finally, sketch (d) in the figure refers to the role of
stochastic processes in S2S variability and prediction,
whether it be noise that is white in time — as in Has-
selmann (1976) or in linear inverse models (LIMs: Pen-
land, 1989, 1996; Penland and Ghil, 1993; Penland and
Sardeshmukh, 1995) — or red in time, as in certain non-
linear data-driven models (Kondrashov et al., 2015, 2013,
2006; Kravtsov et al., 2005, 2009) or even non-Gaussian
(Sardeshmukh and Penland, 2015). Stochastic processes
may enter into models situated on various rungs of the
modeling hierarchy, from the simplest conceptual models
to high-resolution GCMs. In the former, they may enter
via stochastic forcing, whether additive or multiplicative,
Gaussian or not (e.g., Kondrashov et al., 2015), while in
the latter, they may enter via stochastic parametrizations
of subgrid-scale processes (e.g., Palmer and Williams,
2009, and references therein).

Figure 29 summarizes some of the key dynamical mech-
anisms of mid-latitude subseasonal variability, as dis-
cussed in this section and in Ghil et al. (2018), without
attempting to provide a definitive answer as to which ap-
proach to modeling and prediction of this variability is
or will be most productive in the near future.
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F. Internal Variability and Routes to Chaos

In the present section, we illustrate on hand of the
wind-driven ocean circulation a sequence of successive
bifurcations that lead from a highly symmetric, steady-
state circulation to much more finely structured, irregu-
lar, possibly chaotic oscillations. Various issues arise in
pursuing such a bifurcation sequence across a hierarchy
of models and on to the observational data.

Mid-latitude oceanic gyres appear clearly in Fig. 30
below, in the four major extratropical ocean basins,
namely the North and South Atlantic, and the North
and South Pacific. The large, subtropical ocean gyres are
formed by a poleward-flowing western boundary current,
an equatorward-flowing eastern boundary current, and
the roughly zonally flowing currents that connect these
two coastal currents off the equator and on the poleward
basin side, respectively. These gyres are characterized by
so-called anticyclonic rotation, clockwise in the Northern
and anticlockwise in the Southern Hemisphere. In the
North Pacific and the North Atlantic, they are accompa-
nied by smaller, cyclonically rotating gyres, while in the
Southern Hemisphere, such subpolar gyres are missing
and replaced by the Antarctic Circumpolar Current.

The basic phenomenology of these gyres and the de-
tailed physical mechanisms that give rise to it are de-
scribed in several books (e.g., Cushman-Roisin and Beck-
ers, 2011b; Ghil and Childress, 1987; Gill, 1982; Pedlosky,
1996; Sverdrup et al., 1946; Vallis, 2006) and review pa-
pers (Dijkstra and Ghil, 2005; Ghil, 2017). Clearly the
sharp western boundary currents — like the Gulf Stream
in the North Atlantic. the Kuroshio and its cross-basin
extension in the North Pacific, and the Brazil Current in
the South Atlantic — as well as the more diffuse eastern
boundary currents — like the Canaries Current in the
North Atlantic and the California and Peru Currents in
the North and South Pacific, respectively — play a major
role in carrying heat poleward and colder waters equa-
torward. Hence these gyres’ interannual and interdecadal
variability is a major contributor to climate variability.

To illustrate the bifurcation sequence that might lead
to this LFV, we use a highly idealized model of the wind-
driven double-gyre circulation in a rectangular geometry.
Note that the counterparts of synoptic weather systems
in the ocean are eddies and meanders that have much
shorter spatial scales than in the atmosphere, but con-
siderably longer time scales: O(100) km in the ocean
vs. O(1000) km in the atmosphere, but order of sev-
eral months in time vs. order of merely several days.
Thus the definition we used for LFV in the atmosphere,
cf. Sect. III.E.3, does correspond in the ocean to a time
scale of years to decades.

1. A simple model of the double-gyre circulation

The simplest model that includes several of the most
pertinent mechanisms described in Sect. II.B is governed
by the barotropic quasi-geostrophic equations. We con-
sider an idealized, rectangular basin geometry and simpli-
fied forcing that mimics the distribution of vorticity due
to the wind stress, as sketched in Simonnet et al. (2005,
Fig. 2). In our idealized model, the amounts of subpolar
and subtropical vorticity injected into the basin are equal
and the rectangular domain Ω = (0, Lx)× (0, Ly) is sym-
metric about the axis of zero wind stress curl y = Ly/2.

The barotropic 2-D quasi-geostrophic equations in this
idealized setting are:

∂tq + J(ψ, q)− ν∆2ψ + µ∆ψ = −τ sin
(2πy

Ly

)
,(21a)

q = ∆ψ − λ−2
R ψ + βy. (21b)

Here x points east and y points north, while q and ψ are
the potential vorticity and the streamfunction, respec-
tively, and the Jacobian J gives the advection of potential
vorticity by the flow, as already discussed in Sect. II.C.3
, so that J(ψ, q) = ψxqy − ψyqx = u · ∇q.

The physical parameters are the strength of the plan-
etary vorticity gradient β = ∂f/∂y, the Rossby radius
of deformation λ−2

R , the eddy-viscosity coefficient ν, the
bottom friction coefficient µ, and the wind-stress in-
tensity τ . We use here free-slip boundary conditions
ψ = ∆2ψ = 0; the qualitative results described below
do not depend on the choice of homogeneous boundary
conditions (Dijkstra and Ghil, 2005; Jiang et al., 1995b).

We consider the nonlinear system of partial differential
equations (21) as an infinite-dimensional dynamical sys-
tem and study its bifurcations as the parameters change.
Two key parameters are the wind stress intensity τ and
the eddy viscosity ν: as τ increases the solutions become
rougher, while an increase in ν renders them smoother.

An important property of (21) is its mirror symmetry
in the y = Ly/2 axis. This symmetry can be expressed
as invariance with respect to the discrete Z2 group S,

S [ψ(x, y)] = −ψ(x, Ly − y);

any solution of (21) is thus accompanied by its mirror-
conjugated solution. Hence the prevailing bifurcations
are of either the symmetry-breaking or the Hopf type.

2. Bifurcations in the double-gyre problem

The development of a comprehensive nonlinear theory
of the double-gyre circulation over the last two decades
has gone through four main steps. These four steps can
be followed through the bifurcation tree in Fig. 31.
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FIG. 30: A map of the main oceanic currents: warm currents in red and cold ones in blue. Reproduced from Ghil
et al. (2008), with permission from Elsevier.

a. Symmetry-breaking bifurcation. The “trunk” of the bi-
furcation tree is plotted as the solid blue line in the lower
part of the figure. When the forcing τ is weak or the
dissipation ν is large, there is only one steady solution,
which is antisymmetric with respect to the mid-axis of
the basin. This solution exhibits two large gyres, along
with their β-induced western boundary currents. Away
from the western boundary, such a near-linear solution
(not shown) is dominated by so-called Sverdrup balance
between wind stress curl and the meridional mass trans-
port (Gill, 1982; Sverdrup, 1947).

The first generic bifurcation of this quasi-geostrophic
model was found to be a genuine pitchfork bifurcation
that breaks the system’s symmetry as the nonlinearity
becomes large enough with increasing wind stress inten-
sity τ (Cessi and Ierley, 1995; Jiang et al., 1995b). As
τ increases, the near-linear Sverdrup solution that lies
along the solid blue line in the figure develops an eastward
jet along the mid-axis, which penetrates farther into the
domain and also forms two intense recirculation vortices,
on either side of the jet and near the western boundary
of the domain.

The resulting more intense, and hence more nonlinear
solution is still antisymmetric about the mid-axis, but
loses its stability for some critical value of the wind-stress
intensity, τ = τP. This value is indicated by the filled
square on the symmetry axis of Fig. 31 and is labeled
“Pitchfork” in the figure.

A pair of mirror-symmetric solutions emerges and it is
plotted as the two red solid lines in the figure’s middle
part. The streamfunction fields associated with the two

stable steady-state branches have a rather different vor-
ticity distribution and they are plotted in the two small
panels to the upper-left and upper-right of Fig. 31. In
particular, the jet in such a solution exhibits a large, sta-
tionary meander, reminiscent of the semi-permanent one
that occurs in the Gulf Stream, just downstream of Cape
Hatteras. These asymmetric flows are characterized by
one recirculation vortex being stronger in intensity than
the other; accordingly the eastward jet is deflected either
to the southeast, as is the case in the observations for the
North Atlantic, or to the northeast.

b. Gyre modes. The next step in the theoretical treat-
ment of the problem was taken in part concurrently
with the first one above (Jiang et al., 1995b) and in
part shortly thereafter (Dijkstra and Katsman, 1997;
Sheremet et al., 1997; Speich et al., 1995a). It involved
the study of time-periodic instabilities that arise through
Hopf bifurcation from either an antisymmetric or an
asymmetric steady flow. Some of these studies treated
wind-driven circulation models limited to a stand-alone,
single gyre (Pedlosky, 1996; Sheremet et al., 1997); such a
model concentrates on the larger, subtropical gyre while
neglecting the smaller, subpolar one.

The overall idea was to develop a full, generic picture
of the time-dependent behavior of the solutions in more
turbulent regimes, by classifying the various instabilities
in a comprehensive way. However, it quickly appeared
that a particular kind of instability leads to so-called
gyre modes (Jiang et al., 1995b; Speich et al., 1995a),
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FIG. 31: Generic bifurcation diagram for the barotropic
quasi-geostrophic model of the double-gyre problem:
the asymmetry of the solution is plotted versus the

intensity of the wind stress τ . The streamfunction field
is plotted for a steady-state solution associated with
each of the three branches; positive values in red and
negative ones in blue. After Simonnet et al. (2005).

and was prevalent across the full hierarchy of models of
the double-gyre circulation; furthermore, this instability
triggers the lowest nonzero frequency present in all such
models (Dijkstra, 2005; Dijkstra and Ghil, 2005).

These gyre modes always appear after the first pitch-
fork bifurcation, and it took several years to understand
their genesis: gyre modes arise as two eigenvalues merge
— one of the two is associated with a symmetric eigen-
function and responsible for the pitchfork bifurcation, the
other one with an antisymmetric eigenfunction (Simon-
net and Dijkstra, 2002). This merging is marked by a
filled circle on the left branch of antisymmetric station-
ary solutions and is labeled as M in Fig. 31.

Such a merging phenomenon is not a bifurcation in
the term’s usual meaning: Although it corresponds to
a topological change in phase space, the oscillatory be-
havior at and near M is damped. Nevertheless, this os-
cillatory eigenmode is eventually destabilized through a
Hopf bifurcation, which is indicated in Fig. 31 by a heavy

dot marked “Hopf,” from which a stylized limit cycle
emerges. A mirror-symmetric M and Hopf bifurcation
also occur on the right branch of stationary solutions,
but have been omitted for visual clarity. This merging
is as generic as the Pitchfork bifurcation in the figure,
and arises in much more complex situations and models
(e.g., Simonnet, 2005; Simonnet et al., 2003b).

In fact, such merging is quite common in small-
dimensional dynamical systems with symmetry, as ex-
emplified by the unfolding of codimension-2 bifurcations
of Bogdanov-Takens type (Guckenheimer and Holmes,
1983). In particular, the fact that gyre modes trigger
the longest, multi-annual periodicity of the model is due
to the frequency of this mode growing quadratically with
the control parameter from zero — i.e., from infinite pe-
riod — until nonlinear saturation sets in (e.g., Simonnet
and Dijkstra, 2002; Simonnet et al., 2009).

More generally, Hopf bifurcations give rise to features
that recur more-or-less periodically in fully turbulent
planetary-scale flows, atmospheric, oceanic and coupled
(Dijkstra, 2005; Dijkstra and Ghil, 2005; Ghil, 2015,
2017; Ghil and Childress, 1987). It is precisely this kind
of near-periodic recurrence that is identified in the cli-
mate sciences as LFV.

c. Global bifurcations. The bifurcations studied so far —
in this subsection, as well as in the preceding ones —
are collectively known as local bifurcations: they result
from an instability of a specific solution that arises at
a particular value of a control parameter. This term is
meant to distinguish them from the global bifurcations
that will be studied forthwith.

The importance of the gyre modes was further con-
firmed through an even more puzzling discovery. Several
authors realized, independently of each other, that the
low-frequency dynamics of their respective double-gyre
models was driven by intense relaxation oscillations of
the jet (Chang et al., 2001; Meacham, 2000; Nadiga and
Luce, 2001; Simonnet et al., 2005, 2003a,b, 1995). These
relaxation oscillations, already described by Jiang et al.
(1995b) and Speich et al. (1995b), were now attributed
to a homoclinic bifurcation, which is no longer due to
a linear instability of an existing solution but to a so-
called homoclinic reconnection, whose character is global
in phase space (Ghil and Childress, 1987; Guckenheimer
and Holmes, 1983). In effect, the quasi-geostrophic model
reviewed herein undergoes a genuine homoclinic bifurca-
tion that is generic across the full hierarchy of double-
gyre models.

This bifurcation is due to the growth and eventual
merging of the two limit cycles, each of which arises
from either one of the two mutually symmetric Hopf bi-
furcations. The corresponding bifurcation is marked in
Fig. 31 by a filled circle and labeled “Homoclinic”; the
reconnecting orbit itself is illustrated in the figure by a
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stylized lemniscate, and plotted accurately in Simonnet
et al. (2005, Fig. 2). This global bifurcation is associated
with chaotic behavior of the flow due to the Shilnikov
phenomenon (Nadiga and Luce, 2001; Simonnet et al.,
2005), which induces Smale horseshoes in phase space.

The connection between such homoclinic bifurcations
and gyre modes was not immediately obvious, but Simon-
net et al. (2005) emphasized that the two were part of
a single, global dynamical phenomenon. The homoclinic
bifurcation indeed results from the unfolding of the gyre
modes’ limit cycles. This familiar dynamical scenario is
again well illustrated by the unfolding of a codimension-2
Bogdanov-Takens bifurcation, where the homoclinic or-
bits emerge naturally.

Since homoclinic orbits have an infinite period, it was
natural to hypothesize that the gyre-mode mechanism,
in this broader, global-bifurcation context, gave rise to
the observed 7-yr and 14-yr North Atlantic oscillations.
Although this hypothesis may appear a little farfetched
— given the simplicity of the double-gyre models ana-
lyzed so far — it is reinforced by results with much more
detailed models in the hierarchy (e.g., Dijkstra, 2005; Di-
jkstra and Ghil, 2005; Vannitsem et al., 2015).

The successive-bifurcation theory appears therewith to
be fairly complete for barotropic, single-layer models of
the double-gyre circulation. This theory also provides
a self-consistent, plausible explanation for the climat-
ically important 7-year and 14-year oscillations of the
oceanic circulation and the related atmospheric phenom-
ena in and around the North Atlantic basin (Da Costa
and Colin de Verdiére, 2004; Dijkstra, 2005; Dijkstra and
Ghil, 2005; Feliks et al., 2010, 2011, 2004, 2007; Kon-
drashov et al., 2005a; Moron et al., 1998; Plaut et al.,
1995; Simonnet et al., 2005, 2003b; Wunsch, 1999). The
dominant 7- and 14-year modes of this theory survive,
moreover, perturbation by seasonal-cycle changes in the
intensity and meridional position of the westerly winds
(Sushama et al., 2007).

In baroclinic models, with two or more active layers
of different density, baroclinic instabilities (Berloff et al.,
2007; Dijkstra and Ghil, 2005; Feliks et al., 2007; Ghil
and Childress, 1987; Gill, 1982; Kravtsov et al., 2007;
Pedlosky, 1987, 1996; Simonnet et al., 2003b; Stommel,
1965) surely play a fundamental role, as they do in the ob-
served dynamics of the oceans. However, it is not known
to what extent baroclinic instabilities can destroy gyre-
mode dynamics. The difficulty lies in a deeper under-
standing of the so-called rectification process (Katsman
et al., 1998), which arises from the nonzero mean effect
of the baroclinic eddying and meandering of the flow on
its barotropic component.

Roughly speaking, rectification drives the dynamics
farther away from any stationary solutions. In this situ-
ation, dynamical systems theory by itself cannot be used
as a full explanation of complex, observed behavior re-
sulting from successive bifurcations that are rooted in

simple stationary or periodic solutions.
Other tools from statistical mechanics and nonequi-

librium thermodynamics have, therefore, to be consid-
ered (Bouchet and Sommeria, 2002; Farrell and Ioan-
nou, 1996; Lucarini et al., 2014; Lucarini and Sarno,
2011; Majda and Wang, 2006; Robert and Sommeria,
1991; Trefethen et al., 1993), and will be discussed in
Sects. IV and V. Combining these tools with those of
the successive-bifurcation approach could lead to a more
complete physical characterization of gyre modes in re-
alistic models. Preparing the ground for such a combi-
nation of dynamical-systems tools and statistical-physics
tools is one of the main purposes of this review paper.

G. Multiple Scales: Stochastic and Memory Effects

In Sect. II.B, we have illustrated in Fig. 12 the mul-
tiplicity of time scales present in the climate spectrum.
We also pointed out that this multiplicity of scales gives
rise to the need for a hierarchy of models that enable the
study of separate scales of motion and of the phenom-
ena associated with each, as well as of the interactions
between two or more scales, cf. Fig. 11 . In this subsec-
tion, we discuss several ways in which one can address
these issues, using the theory of stochastic processes and
taking into account non-markovian effects.

1. Fast Scales and Their Deterministic Parametrization

Let us concentrate, for the sake of definiteness, on vari-
ability within a particular range of frequencies f in the
climatic power spectrum of Fig. 12a, say seasonal to cen-
tennial, i.e., 10−2 yr−1 = f1 ≤ f ≤ f2 = 100 yr−1, and
write a model of this variability as

ż = H(z;µ). (22)

We have seen that oscillatory modes of both the THC,
cf. Sect. III.D , and of the wind-driven circulation, cf.
Sec. III.F, lie in this range. How should one then take
into account the slower time scales to the left of this
range, f0 < f < f1, and the faster ones to the right,
f2 < f < f3, where 0 ≤ f0 < 10−2 yr−1 and 1 < f3 <∞?

A time-honored approach in physical modeling is to
describe variability to the left as a prescribed (slow) evo-
lution of parameters,

µ = µ(εt), 0 < ε� 1, (23)

where ε is small and εt is, therefore, a slow time. One
might, for instance, consider a particular µ = µ(εt) in
Eq. (23) above to represent a slow change in the solar
constant or in the height of the topography.

To the right, one might approximate the more rapid
fluctuations as being very fast with respect to those of
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main interest or even infinitely fast. There are two dis-
tinct approaches based on these ideas: the first one is
purely deterministic, the second one introduces a noise
process and thus stochastic considerations.

The standard slow–fast formulation of a system of dif-
ferential equations — when assuming a large but finite
separation of time scales — is given, for ε 6= 0, by

x′ = F (x, y; ε), (24a)

y′ = εG(x, y; ε). (24b)

Here z = (x, y)T, with x the fast and y the slow variable,
and H = (F,G)T, while (·)T designates the transpose
and (·)′ = d(·)/dt stands for differentiation with respect
to the fast time t.

As long as ε 6= 0, system (24) is equivalent to the so-
called slow system

εẋ = F (x, y; ε), (25a)

ẏ = G(x, y; ε), (25b)

in which the dot stands for differentiation d(·)/dτ with
respect to the slow time τ = εt.

The classical way of dealing with such problems has
been matched asymptotic expansions (e.g., Grasman,
1987; Lagerstrom, 1988). This methodology arose origi-
nally from dealing with boundary layers in fluid dynam-
ics, with the inner problem refering to the fast variations
in the boundary layer, while the outer problem refers to
the more slowly varying free flow outside this layer.

More recently, a point of view inspired by dynamical
systems theory (Fenichel, 1979) has led to geometric sin-
gular perturbation theory (e.g., Jones, 1995). In this ap-
proach, one considers the invariant manifolds that arise in
the two complementary limits obtained by letting ε→ 0
in the fast and the slow system, respectively.

In the fast system (24), the limit is given by

x′ = F (x, y; 0), (26a)

y′ = 0, (26b)

while in the slow one, it only makes sense if the right-
hand side of (25a) is identically zero; if so, the latter
limit is given by

0 = F (x, y; 0), (27a)

ẏ = G(x, y; 0). (27b)

The algebraic equation F (x, y; 0) = 0 defines the criti-
cal manifold Mc on which the solutions of the reduced
problem ẏ = G(x, y; 0) evolve; here x = XF (y) are the
explicit solutions of the implicit equation (27a).

The splitting of the full, slow–fast system given by
either Eqs. (24) or (25) into the two systems (26) and
(27) has proven very helpful in the study of relax-
ation oscillations (e.g., Grasman, 1987). We saw such
sawtooth-shaped, slow–fast oscillations arise in either the

THC (Sect. III.C.2) or the wind-driven circulation of the
oceans (Sect. III.F.2).

Another important application of this methodology is
in the reduction of large multiscale problems to much
smaller ones. In the systems (24) and (25), we con-
sidered both x and y to be scalar variables. We saw
in Fig. 11, though, that the characteristic spatial and
temporal scales of atmospheric, oceanic and coupled cli-
mate phenomena are highly correlated with each other;
large-scale motions tend to be slow and the smaller-scale
ones faster. Thus, it is much more judicious to consider
z = (XT,YT)T, with X ∈ Rm, Y ∈ Rn, and m � n,
i.e., the number of small and fast degrees of freedom much
larger than that of the large and slow ones.

This set-up corresponds conceptually to the
parametrization problem, which we defined in Sect. II.B
as finding a representation of the unresolved subgridscale
processes described by X ∈ Rm in terms of the resolved,
larger-scale ones described by Y ∈ Rn. A paradigmatic
example is that of parametrizing cloud processes, with
spatial scales of 1 km and smaller and with temporal
scales of one hour and less, given the large-scale fields
characterized by lengths of tens and hundreds of kilome-
ters and by durations of substantial fractions of a day
and longer. In this case, the critical manifold appears
to be S-shaped, as for the periodically forced Van der
Pol oscillator (e.g., Guckenheimer et al., 2003, Fig. 2.1),
with jumps that occur between the branch on which
convection, and hence rain, is prevalent, and the one
on which the mean vertical stratification is stable, and
thus no rain is possible. Next, we discuss specifically the
parametrization of convective processes and of clouds in
this perspective.

2. An Example: Convective Parametrization

Clouds have a dramatic role in climate modeling and
in determining the climate’s sensitivity to natural and
anthropogenic perturbations (e.g., IPCC, 2001, 2014a).
A substantial literature exists, therefore, on cloud obser-
vations, modeling and simulation (e.g., Emanuel, 1994,
and references therein). See our earlier discussion in
Sects. II.C.2 and III.G.1. One of the oldest, best known
and most widely used cumulus parametrizations is the
Arakawa and Schubert (1974) (AS) one. Cumulus con-
vection occurs due to moist convective instability, which
converts the potential energy of the large-scale mean
state into the kinetic energy of the cumulus clouds, A
fundamental parameter in this process is the fractional
entrainment rate λ of a cumulus updraft. In the AS
parametrization of moist atmospheric convection, the key
idea is that an ensemble of cumulus clouds is in quasi-
equilibrium with the large-scale environment.

The cloud work function A(λ) changes in time accord-
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ing to

Ȧ(λ) = J ⊗MB(λ) + F (λ); (28)

here MB(λ) is the nonnegative mass flux through the
cloud base, and J ⊗MB is a weighted average over cloud
types, with J standing for the weights in the averaging
integral, while F is the large-scale forcing.

The dot stands for differentiation with respect to the
slow time τ = εt, as in Eq. (25a). The quasi-equilibrium
assumption in the AS parametrization corresponds sim-
ply to the critical manifold equation Eq. (27a) above,
which becomes

0 = J ⊗MB(λ) + F (λ). (29)

In this case, the small parameter that corresponds to
the ε of the general slow–fast formulation above is the
reciprocal of the adjustment time τadj of a cloud ensemble
to the mean state, ε ∼ 1/τadj.

Pan and Randall (1998) proposed an equation that
corresponds to the behavior of a cumulus ensemble off
the critical manifold given by (29), which they termed a
prognostic closure. In their formulation, one computes a
cumulus kinetic energy K from

K̇ = B + S −D; (30)

here B is the buoyancy production term, S the shear pro-
duction term, and D the vertically integrated dissipation
rate. The main parameters on which the behavior of the
slow–fast system given by Eqs. (29, 30) depends are

α = M2
B/K, τD = K/D. (31)

While Pan and Randall (1998) do not determine α, τD or
τadj explicitly, they provide qualitative arguments based
on the physics of cumulus convection that make the
quasi-equilibrium limit plausible.

3. Stochastic Parametrizations

It is of broader interest, though, to consider now the
slow–fast formulation of a system of differential equa-
tions in the case of infinite separation of time scales,
i.e., when the fast motions have infinite frequency or,
more precisely, zero decorrelation time. In this case, one
has to introduce a white-noise process and the associated
stochastic considerations.

The basic idea relies on the Einstein (1905) explanation
of Brownian motion, in which a large particle is immersed
in a fluid formed of many small ones. Let the large par-
ticle move along a straight line with velocity u = u(t),
subject to a random force η(t) and to linear friction −λu,
with coefficient λ. The equation of motion is

du = −λudt+ η(t). (32)

The random force η(t) is assumed to be a “white noise,”
i.e., it has mean zero E [η(t;ω)] = 0 and autocorrelation
E [η(t;ω)η(t+ s;ω)] = σ2δ(s), where δ(s) is a Dirac func-
tion, σ2 is the variance of the white-noise process, ω
labels the realization of the random process, and E is
the expectation operator, which averages over the real-
izations ω. Alternative notations for the latter are the
overbar, in climate sciences, and the angle brackets, in
quantum mechanics, E [F ] := F̄ := 〈F 〉.

Equation (32), with η = σdW , is a linear stochastic
differential equation (SDE) of a form that is now referred
to as a Langevin equation, where W (t) is a normalized
Wiener process, also called Brownian motion. It was in-
troduced into climate dynamics by Hasselmann (1976),
who identified slow, “climate” changes with the motion
of the large particle and fast, “weather” fluctuations with
the motions of the small fluid particles. He also thought
of weather as associated with the atmosphere and climate
with the ocean, cryosphere and land vegetation.

Specifically, Hasselmann (1976) assumed that, in a sys-
tem like (22), and without formally introducing the time-
scale separation parameter ε, one would have τx � τy,
where τx and τy are the characteristic times of the fast x-
and slow y-variables, respectively. From this assumption,
and relying also upon the results of Taylor (1921), he de-
rived then a linear SDE for the deviations y′jof the slow
variables Y from a reference state Y0, and the proper-
ties of the corresponding covariance matrix and spectral
densities. In particular, the red-noise character of the
spectrum S = S(f), with S ∼ f−2 for many oceanic
observed time series, gave considerable credence to the
thermal-flywheel role that Hasselmann (1976) attributed
to the ocean in the climate system.

In the light of recent mathematical results on very large
time scale separation in slow–fast deterministic systems,
let us consider a relatively simple — but still sufficiently
relevant and instructive — case, in which the reduction
to an SDE can be rigorously derived, cf. Pavliotis and
Stuart (2008) and Melbourne and Stuart (2011). Their
deterministic system of ordinary differential equations
(ODEs) is a small modification of Eq. (25), namely

ẋ = ε−1f0(y(ε)) + f1(x(ε), y(ε)), x(ε)(0) = x0,(33a)

ẏ(ε) = ε−2g(y(ε)), y(ε)(0) = y0, (33b)

where x(ε) ∈ Rd and y(ε) ∈ Rd′ .
The formal difference with respect to the situation

studied in the previous subsection is that F (x, y; ε) of
(25a) has been expanded in ε as F (x, y; ε) = f0(y(ε)) +
εf1(x(ε), y(ε)), whileG(x, y; ε) of (25b) has been both sim-
plified, in becoming x-independent, and “accelerated,” to
read G(x, y; ε) = ε−2g(y(ε)). The basic idea is that the
the chaotic and fast y(ε) induces, as ε→ 0, a white-noise
driving of the slow x. Note that one needs d′ ≥ 3 for the
autonomous Eq. (33b) to have chaotic solutions.

Melbourne and Stuart (2011) assume merely that
the fast equation (33b) has a compact attractor Λ ∈
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Rd′ , which supports an invariant measure µ, and that
Eµf0(x) = 0, along with certain boundedness and regu-
larity conditions on f(x, y). They then show rigorously
that x(ε)(t) →p X(t) as ε → 0, where the convergence is
with respect to the appropriate probability measure, and
X(t) is the solution of the SDE

X(t) = x0 +

∫ t

0

F (X(s))ds+ σW (t). (34)

Here W is the Brownian motion with variance σ2, such
that the white noise in Eq. (32) be given by η = σdW .
Moreover, F (X) = EµF (x, ·) with respect to µ.

Fundamental mathematical issues associated with the
above diffusive limit of slow–fast systems were explored
by Papanicolaou and Kohler (1974) and early results in
the physical literature include Beck (1990) and Just et al.
(2001). Many aspects of the applications to climate mod-
eling are covered in Palmer and Williams (2009). More
specifically, Berner et al. (2017) and Franzke et al. (2015)
discuss issues of stochastic parametrization of subgrid-
scale processes.

To conclude this subsection, it is of interest to consider,
in a broader perspective, the potential for a unified the-
ory of nonautonomous dynamical systems, in which the
fast processes may be modeled as either deterministic
or stochastic. The theory of purely deterministic, skew-
product flows was laid on a solid basis by Sell (1971,
and references therein) and, more recently, by Kloeden
and Rasmussen (2011). Random dynamical systems are
extensively covered by Arnold (1998), with many recent
results in an active field.

Berger and Siegmund (2003) point out that “Quite of-
ten, results for random dynamical systems and continu-
ous skew product flows are structurally similar,” and thus
open the way to a unified theory. They outline both com-
monalities and distinctions between the two broad classes
of nonautonomous dynamical systems, in order to shed
further light on existing results, as well as stimulate the
development of common concepts and methods.

Caraballo and Han (2017) provide a solid and accessi-
ble introduction to random dynamical systems, as well as
to deterministically nonautonomous ones, along with sev-
eral interesting applications. They also consider the two
distinct types of formulation of the deterministic ones,
the so-called process formulation and the skew-product
flow one. System (33) above, for instance, is a particular
case of a master–slave system

ẋ = f(x, y), ẏ = g(y), with x ∈ Rd, y ∈ Rd
′

(35)

that induces a skew-product flow, where y(t) is the driv-
ing force for x(t).

These developments bear following, to the extent that
the climate sciences offer a particularly rich source of rel-
evant problems and could thus lead to novel and power-
ful applications of the unified theory. Caraballo and Han

(2017) already studied the Lorenz (1984) model, in which
seasonal forcing acting on deterministic subseasonal vari-
ability can induce interannual variability. Other applica-
tions will be discussed in the next section, especially in
Sect. IV.E.

4. Modeling Memory Effects

While the study of differential equations goes back to
Isaac Newton, the interest for including explicitly de-
lays into evolution equations that govern physical and
biological processes is relatively recent. A mid-20th–
century reference is Bellman and Cooke (1963), followed
by Driver (1977) and Hale (1977). Delay-differential
equations (DDEs) were introduced into the climate sci-
ences by Bhattacharya et al. (1982) and have been used
widely in studying ENSO (e.g., Ghil et al., 2015; Tziper-
man et al., 1994a, and references therein).

As we shall see, memory effects can play a key role
when there is little separation between scales, in con-
trast to the assumptions of Hasselmann (1976) and of
other authors mentioned in the two immediately preced-
ing subsections. Moreover, when properly incorporated
in the mathematical formulation of the climate problem
at hand, relying on such effects can lead to highly efficient
and accurate model reduction methods.

a. The Mori-Zwanzig formalism. In statistical physics,
the Mori (1965)-Zwanzig (1961) (MZ) formalism arose
from describing the interaction of a Hamiltonian many-
particle system with a heat bath. Today, though, it is
being used in a large number of applications that include
dissipative systems.

The fundamental idea is illustrated by the following
very simple, linear system of two ODEs (E and Lu, 2011):

ẋ = a11x+ a12y, (36a)

ẏ = a21x+ a22y. (36b)

The sole assumption is that we are interested in the de-
tails of the behavior of x(t) but only in the statistics of
y; naturally, one thinks of y as fluctuating faster than x
but this is not actually required for the formalism out-
lined below to work. One considers x as a (slowly vary-
ing) parameter in solving Eq. (36b) for y by using the
variation-of-constants formula

y(t) = ea22ty(0) +

∫ t

0

ea22(t−s)a21x(s)ds,

and plugs this result back into Eq. (36a), to yield

ẋ = a11x+

∫ t

0

K(t− s)x(s)ds+ f(t). (37)
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Equation (37) is a generalized Langevin equation
(GLE), in which K(t) = a12 exp(a22t)a21 is the memory
kernel and f(t) = a12 exp(a22t)y(0) is the noise term,
since one thinks of y(0) as randomly drawn from the
rapidly fluctuating y(t). The essential difference with
respect to Eq. (32) is the convolution integral in (37),
which expresses the delayed action of the slow variable x
on the fast variable y.

The MZ formalism consists — in a general, nonlinear
set of Markovian evolution equations with a large or even
infinite number of degrees of freedom — in selecting the
variables one is interested in via a Mori-Zwanzig projec-
tion operator, and deriving the generalized form of the
GLE above. Examples of Markovian evolution equations
are systems of ODEs or partial differential equations for
which an instantaneous initial state carries all the infor-
mation from the past.

In this general case, the memory term involves re-
peated convolutions between decaying memory kernels
and the resolved modes, and the GLE is therewith a non-
Markovian, stochastic integro-differential system that is
very difficult to solve without further simplifications.
Among the latter, the short-term memory approxima-
tion (e.g., Chorin and Stinis, 2007) posits rapidly decay-
ing memory and is equivalent to assuming a relatively
large separation of scales, as in Sects. III.G.1 and III.G.3
above.

Fortunately, Kondrashov et al. (2015) have shown that
there is a way to approximate the GLE in a very broad
setting, efficiently and accurately, by a set of Markovian
SDEs without the need for pronounced scale separation
and in the presence of so-called intermediate-range mem-
ory. This way relies on a methodology that was devel-
oped at first quite independently of the MZ formalism,
namely empirical model reduction (EMR: Kondrashov
et al., 2005b; Kravtsov et al., 2005, 2009).

b. Empirical model reduction (EMR) methodology. The
purpose of EMR development was deriving relatively sim-
ple nonlinear, stochastic-dynamic models from time se-
ries of observations or of long simulations with high-end
models, such as GCMs. An EMR model can be com-
pactly written as

ẋ = −Ax + B(x,x) + L(x, rlt, ξt, t), 0 ≤ l ≤ L− 1. (38)

Here x typically represents the resolved and most en-
ergetic modes. Most often, these are chosen by first se-
lecting a suitable basis of empirical orthogonal functions
(EOFs: Preisendorfer, 1988) or other data-adaptive basis
(e.g., Kravtsov et al., 2009, and references therein), and
retaining a set of principal components that capture a
satisfactory fraction of the total variance in the data set.

The terms −Ax and B(x,x) represent, respectively,
the linear dissipation and the quadratic self-interactions
of these modes, while L is a time-dependent operator that

is bilinear in the resolved variables x and the unresolved
ones rlt. These interactions take a prescribed form in the
EMR formulation of Eq. (38), and arise by integrating
recursively—from the lowest level L to the top level, l =
0—the “matrioshka” of linear SDEs

drlt = Ml(x, r
0
t , . . . , r

l
t)d + rl+1

t dt.

At each level l, the coupling between the variable rlt and
the previous-level variables (x, r0

t , . . . , r
l−1
t ) is modeled

by L− 1 rectangular matrices Ml of increasing order.
In practice, the matrices A,Ml, and the quadratic

terms B are estimated by a recursive least-square proce-
dure, which is stopped when the Lth-level residual noise
rL−1 = ξt has a lag−1 vanishing autocorrelation. The
stochastic residuals rlt, obtained in this recursive mini-
mization procedure, are ordered in decreasing order of
decorrelation time, from r0

t to ξt.
Note that the integral terms arising in the L operator

are convolution integrals between the macro-state vari-
ables x and memory kernels that decay according to the
dissipative properties of the matrices Ml. These decay
times are not necessarily short and one can thus treat
the case of intermediate-range memory, in the MZ ter-
minology. Furthermore, cf. Kondrashov et al. (2005b),
note that any external forcing, such as the seasonal cy-
cle, can be typically introduced as a time dependence in
the linear part A of the main level of Eq. (38) .

c. Role of memory effects in EMR. We propose here a sim-
ple analytic example that should help understand the
general description of EMR in the previous paragraphs,
as well as the connection to the MZ formalism. The
model is given by

dx = (f(x) + r)dt, (39a)

dr = (γx− αr)dt+ dWt, (39b)

where f is a nonlinear function, Wt = Wt(ω) is a stan-
dard Wiener process, as in Eq. (32), α > 0 and γ is
real. We are interested in x, which is slow, and want to
parameterize r, which is fast.

Proceeding for (39) as we did for the system (36), but
now for a fixed realization ω ∈ Ω, we get

r(t;ω) = e−αtr0 + γ

∫ t

0

e−α(t−s)x(s)ds+Wt(ω),

where r(t0;ω) = r0. Substituting this back into (39a)
yields the following randomly forced integro-differential
equation,

ẋ = f(x) + e−αtr0 + γ

∫ t

0

e−α(t−s)x(s)ds+Wt(ω), (40)

which is the analog of Eq. (37) in the stochastic-dynamic
context of (39).
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Kondrashov et al. (2015) proved rigorously that the
EMR (38) is equivalent to a suitable generalization of
the GLE (40). Thus, the EMR methodology can be seen
as an efficient implementation of the MZ formalism, i.e.,
an efficient solution of the associated GLE, even in the
absence of large-scale separation. This result explains the
remarkable success of EMR in producing reduced models
that capture the multimodality as well as the nontrivial
power spectrum of phenomena merely known from time
series of observations or of high-end model simulations.

In the remainder of this subsection, we give two exam-
ples of this success and further references to many more.
Alternative approaches to efficient solutions of the GLE
can be found, for instance, in Chorin et al. (2002).

d. EMR applications. We choose here an EMR model
to simulate Northern Hemisphere mid-latitude flow
(Kravtsov et al., 2005) and a real-time ENSO predic-
tion model (Kondrashov et al., 2005b). Further exam-
ples of successful application of the methodology appear
in Kravtsov et al. (2009, 2011) and elsewhere.

Kravtsov et al. (2005) introduced the EMR methodol-
ogy and illustrated it at first with quadratically nonlinear
models of the general form given here in Eq. (38). The
applications were to the Lorenz (1963) convection model,
the classical double-well potential in one space dimen-
sion, and a triple-well potential in two dimensions with
an exponential shape for the wells. More challenging was
a real-data application to geopotential height data for 44
boreal winters (1 December 1949–31 March 1993). The
data set consisted of 44×90 = 3960 daily maps of winter
data, defined as 90-day sequences starting on 1 Decem-
ber of each year. The best EMR fit for the data required
the use of nine principal components and of L = 3 levels.

The probability density functions (PDFs) for the ob-
served and the EMR model–generated data sets are plot-
ted in Fig. 32. The EMR clearly captures quite well the
three modes obtained with a Gaussian mixture model,
cf. Smyth et al. (1999) and Ghil and Robertson (2002).
These three modes correspond to three clusters found
by by Cheng and Wallace (1993) using very different
methods on a somewhat different data set. The maps
of the corresponding centroids appear as Fig. 1 in Ghil
and Robertson (2002) and are discussed therein; they
agree quite well with those of Cheng and Wallace (1993),
cf. Smyth et al. (1999, Fig. 9).

Kondrashov et al. (2005b) fitted the global SST field
between 30◦S–60◦N over the time interval January 1950–
September 2003 by using linear and quadratic EMR mod-
els with one and two noise levels, L = 1, 2, based on
monthly SST anomaly maps and allowing a seasonal de-
pendence of the dissipative terms in Eq. (38). Their re-
sults when using L = 2 were much better, for either a
linear or a quadratic model, which clearly shows the role
of memory effects in EMR modeling and the connection

FIG. 32: Multimodal probability density function
(PDF) for the Northern Hemisphere’s geopotential

height anomalies of 44 boreal winters; see Smyth et al.
(1999) for details of the data set and of the mixture

model methodology for computing the PDFs. (a) PDF
of the observed height anomalies; and (b) of the

anomalies given by the EMR model. Modified from
Kravtsov et al. (2005), with the permission of the

American Meteorological Society.

with the MZ formalism that was explained above.
The use of the EMR models in prediction was tested

by so-called hindcasting or retrospective forecasting, i.e.,
a protocol — also called “no look-ahead” — in which the
data available past a certain time instant are eliminated
when constructing the model to be used in the forecast
to be evaluated. The results of these tests are plotted in
Fig. 33, for L = 2 and a linear vs. a quadratic model.
The light-black rectangle in the Eastern Tropical Pacific
corresponds to the region (5◦S–5◦N, 150◦–90◦W) over
which SST anomalies are averaged to obtain the Niño-3
index, already mentioned in Sect. III.E.2.

Climate forecast skill is measured mainly via root-
mean-square errors and anomaly correlations. The for-
mer skill scores are given in Kondrashov et al. (2005b,
Fig. 2d) and clearly indicate the superiority of the
quadratic model. The latter apeear in Fig. 33 here, too.

Anomaly correlations of roughly 0.5–0.6 (red in the
figure) are considered quite useful in climate prediction,
and the red area is substantially larger in panel (b) here,
covering most of the Tropical Pacific and Indian Oceans.
Concerning actual real-time forecasts, Barnston et al.
(2012) have found that, over the 2002–2011 interval of
their evaluation, the EMR-based forecasts of UCLA’s
Theoretical Climate Dynamics (TCD) group were at
the top of the eight statistical models being evaluated
and exceeded in skill by only a few of the 12 dynamical,
high-end models in the group that participated in the IRI
ENSO Forecast plume https://iri.columbia.edu/

our-expertise/climate/forecasts/enso/current/

?enso_tab=enso-sst_table.

e. Explicit derivation of the parametrized equations. The
EMR methodology is data-driven, so that it allows to
construct bottom-up an effective dynamics able to ac-

https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-sst_table
https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-sst_table
https://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-sst_table
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FIG. 33: Validation of forecast skill of the EMR-based
ENSO model of Kondrashov et al. (2005b) via anomaly

correlation maps of SSTs at 9-month lead time. (a)
Using a quadratic EMR model with L = 1; and (b) a

quadratic model with L = 2. Modified from
Kondrashov et al. (2005b), with the permission of the

American Meteorological Society.

count for the observed data. Wouters and Lucarini (2012,
2013), showed that the MZ formalism can be used also
to derive the parametrizations in a top-down manner in
a rather general way. Assume the system of interest is
described by the following evolution equations:

Ẋ = fX(X) + εΨX(X,Y), (41a)

Ẏ = fY(Y) + εΨY(X,Y); (41b)

here, again, X ∈ Rm, Y ∈ Rn, X is the set of large-scale,
energetic variables of interest and, typically, m� n.

We assume, furthermore, that ε is a small parameter
describing the strength of the coupling between the two
sets of variables, and that, if ε = 0, the dynamics is
chaotic for both the X and Y variables. By expanding
the MZ projection operator, it is possible to derive the
following expression for the projected dynamics on the X
variables, which is valid up to order O(ε3):

Ẋ = fX(X)+εM(X)+εS(X)+ε2
∫
K(X, t−s)ds. (42)

This equation provides the explicit expression of the
mean-field, deterministic term M ; the time-correlation
properties of the stochastic term S that is, in general,
multiplicative; and of the integration kernel K, which
defines the non-Markovian contribution.

Figure 34 provides a schematic diagram of the three
terms of the parametrization: the M -term comes from
time averaging of the effects of the Y variables on the
X variables; the S-term results from the fluctuations

of the forcing of the Y variables on the X variables;
and the non-Markovian contribution represents the self-
interaction of the X variables on themselves at a later
time, mediated by the Y variables.

These terms are derived using the statistical properties
of the uncoupled dynamics of the Y variables, at ε = 0.
Note that, in the limit of infinite time scale separation
between the X and Y variables, the non-Markovian term
drops out and the stochastic term becomes a white-noise
contribution, where one needs to use the Stratonovich
definition of the stochastic integral. If, instead, ΨY = 0
in the master–slave system (41), the non-Markovian term
is identically zero, as expected.

FIG. 34: Schematic representation of the three terms
contributing to the parametrization of the fast variables
X in Eq. (42). (a) Mean-field term M ; (b) stochastic

term S; and (c) memory term with kernel K. The
symbols (τ, τ1, τ2) denote the delays involved in these

effects. Reproduced with permission from Wouters and
Lucarini (2013).

A surprising property of the surrogate dynamics given
by Eq. (42) is that the expectation value of any observ-
able φ(X) is the same as for the full dynamics governed
by Eq. (41), up to third order in ε (Wouters and Lu-
carini, 2013). This property is due to the fact that one
can derive Eq. (42) by treating the weak coupling using
Ruelle response theory (Ruelle, 1998, 1999, 2009); see
Sect. IV.E.3 below. As a result, the average model error
due to the use of parametrized dynamics is well under
control; see discussion in Hu et al. (2019). Moreover,
Vissio and Lucarini (2018a,b) showed by explicit exam-
ples that this top-down approach can, in some cases, help
derive scale-adaptive parametrizations, while Demaeyer
and Vannitsem (2017) demonstrated its effectiveness in
an intermediate complexity climate model.
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IV. CLIMATE SENSITIVITY AND RESPONSE

A central goal of the climate sciences is to predict the
impact of changes in the system’s internal or external pa-
rameters — such as the greenhouse gas (GHG) concentra-
tion or the solar constant — on its statistical properties.
A key concept in doing so is climate sensitivity, which
aims to measure the response of the climate system to
external perturbations of Earth’s radiative balance. As
we shall see below, this measure is being used for pro-
jecting, for instance, mean temperature changes over the
coming century as a response to increasing concentrations
of atmospheric GHGs. While a good start, accurate and
flexible predictions of climate changes require, though,
more sophisticated concepts and methods.

A. A Simple Framework for Climate Sensitivity

In order to illustrate the main ideas, let us consider
the simple energy balance model (EBM) introduced in
Eqs. (12) of Sect. III.A where the net radiation R =
Ri − Ro at the top of the atmosphere is related to the
corresponding average temperature T near the Earth’s
surface by R = R(T ). This simple, 0-D EBM in-
cludes both longwave and shortwave processes, so that
cdT/dt = R(T ), as in Eq. 12a.

Following Peixoto and Oort (1992) and Zaliapin and
Ghil (2010), we assume, furthermore, that there are N
climatic variables {αk = αk(T ), k = 1, . . . , N} that
are, to a first approximation, directly affected by the
temperature change only and which can, in turn, af-
fect the radiative balance. Hence, one can write R =
R (T, α1(T ), . . . , αN (T )). Let us assume, furthermore,
that, for a certain reference temperature T = T0 one has
R(T0) = 0, which corresponds to steady-state conditions.

The simplest framework for climate sensitivity is to
think of the difference in global annual mean surface air
temperature ∆T between two statistical steady states,
which have distinct CO2 concentration levels. We then
assume that changing the CO2 concentration corresponds
to applying an extra net radiative forcing ∆R̃ to the sys-
tem, and look for the corresponding change ∆T in the
average temperature, so that R(T0 + ∆T ) + ∆R̃ = 0.

For small ∆T and smooth R = R(T ), the Taylor ex-
pansion yields

∆R̃ = −dR

dT

∣∣∣∣
T=T0

∆T +O
(
(∆T )2

)
=
∂R

∂T

∣∣∣∣
T=T0

∆T −
∑N
k=1

∂R

∂αk

∂αk
∂T

∣∣∣∣
T=T0

∆T

+O
(
(∆T )2

)
. (43)

Here, O(x) is a function such that O(x) ≤ C x as soon
as 0 < x < ε for some positive constants C and ε. While
the higher-order terms in ∆T are usually small, they can

become important where the smooth dependence of R on
T breaks down. Specifically, rapid climate change may
ensue when the system crosses a tipping point, as will be
explained further below.

Introducing the notations

1

λ0(T0)
= −∂R

∂T

∣∣∣∣
T=T0

, (44a)

fk(T0) =− λ0(T0)
∂R

∂αk

∂αk
∂T

∣∣∣∣
T=T0

, (44b)

for the “reference sensitivity” λ0 and the “feedback fac-
tors” fk at the reference state T = T0, we obtain

∆R̃ =
1−

∑N
k=1 fk(T0)

λ0(T0)
∆T +O

(
(∆T )2

)
, (45)

which readily leads to

∆T = Λ(T0)∆R̃+O
(
(∆T )2

)
. (46)

Here

Λ(T0) = −dR

dT

∣∣∣∣
T=T0

=
λ0((T0))

1−
∑N
k=1 fk(T0)

(47)

is the linear gain factor, which can be defined as long as∑N
k=1 fk((T0)) 6= 1; note that, if the sum of the feedback

factors exceeds unity, i.e.
∑N
k=1 fk((T0)) > 1, the system

is unstable.
Referring again to Eqs. (12), the feedback associated

with the dependence of α on the temperature in Eq. (12b)
is traditionally the ice-albedo feedback, while the depen-
dence of the emissivity m on the temperature in Eq. (12c)
is associated with the changes in the atmospheric opacity.
For the latter one, the standard, reference sensitivity, as-
sociated with deviations from Planck’s law for black-body
radiation, is λ0(T0) = −∂R/∂T |T=T0

= 4σm(T0)T 3
0 .

More specifically, feedbacks that can contribute to
changes in reflectivity in Eq. (12b) include, aside from the
incremental presence of snow and ice, also the climate-
vegetation feedback (e.g., Rombouts and Ghil, 2015;
Watson and Lovelock, 1983; Zeng and Neelin, 2000, and
references therein). The feedbacks that can affect the
sensitivity of emitted radiation in Eq. (12c) include at-
mospheric alteration in water vapor content and cloud
cover, as well as in GHGs and aerosol concentration.

In climate studies, different measures of climate sensi-
tivity are used. The so-called equilibrium climate sensi-
tivity (ECS) denotes the globally and annually averaged
surface air temperature increase that would result from
sustained doubling of the concentration of carbon diox-
ide in Earth’s atmosphere vs. that of the reference state,
after the climate system had reached a new steady-state
equilibrium (Charney et al., 1979). The ECS was used
extensively by the IPCC’s first three assessment reports,
up to IPCC (2001).
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FIG. 35: Test of the linear scaling of the long-term
climate response with respect to the CO2 concentration
increase in 15 GCMs. On the abscissa: standard ECS,
as in Eq. (48); on the ordinate: long-term response of

the globally averaged surface air temperature to
quadrupling of the CO2 concentration. Reproduced

with permission from Pfister and Stocker (2017).

Taking the linear approximation in Eqs. (43)–(46)
above, one has:

ECS = Λ(T0)∆R̃2×CO2

=
λ0((T0))

1−
∑N
k=1 fk(T0)

∆R̃2×CO2
. (48)

Note that the radiative forcing is, to a good approxima-
tion, proportional to the logarithm of the CO2 concen-
tration. Hence, in the linear-response regime, and for a
given reference state T0, the long-term globally averaged
surface air temperature change resulting from a quadru-
pling of the CO2 concentration is twice as large as the
ECS; see Fig. 35.

The concept of climate sensitivity can be generalized to
describe the linear dependence of the long-term average
of any climatic observable with respect to the radiative
forcing due to changes in CO2 or in other GHGs, as well
as to changes in solar radiation, aerosol concentration
or any other sudden changes in the forcing (Ghil, 1976,
2015; von der Heydt et al., 2016; Lucarini et al., 2010b).

B. Climate Sensitivity: Uncertainties and Ambiguities

The ECS is widely considered to be the most impor-
tant indicator in understanding climate response to nat-
ural and anthropogenic forcings. It is usually estimated
from instrumental data coming from the industrial age,
from proxy paleoclimatic data, and from climate mod-
els of different levels of complexity. In climate models,

FIG. 36: Estimates of the state dependence of the ECS
using the Community Earth System Model (CESM).

The four curves correspond to CESM simulations with
four multiples of the solar constant Q0: in the notation

of Eqs. (12) here, µ = 0.75, 0.875, 1.0 and 1.1 for the
blue, green, brown and red curves. (b) ECS as a

function of CO2 partial pressure; and (c) ECS as a
function of global mean surface air temperature. The
temperatures shown in (c) are an average between the
base and doubled-CO2 state. The shaded region in (b)
and (c) indicates the IPCC estimated range for ECS.
Reproduced with permission from Figs. 1(b,c) of Wolf

et al. (2018); see also Gómez-Leal et al. (2018).

the ECS results from a nontrivial combination of several
model parameters that enter the feedback factors {fk} in
Eq. (44b) above, and it requires careful tuning. Despite
many years of intense research, major uncertainties still
exist in estimating it from past climatic data, as well as
substantial discrepancies among different climate models
(IPCC, 2001, 2007, 2014a). In fact, Charney et al. (1979)
estimated the ECS uncertainty as 1.5–4.5 K for CO2 dou-
bling and this range of uncertainties has increased rather
than decreased over the four intervening decades.

The basic reason for these uncertainties lies in the high
sensitivity of the ECS to the strength of the feedbacks fk,
as a result of the factor 1/{1−

∑N
k=1 fk(T0)} in Eq. (47).

Efforts to reduce the uncertainty in ECS values for the
current climate include adopting ultra-high resolution
GCMs (Satoh et al., 2018), in which one may better ac-
count for feedbacks that act on a larger range of scales,
to applying relations that are rigorously valid for simple
stochastic models to the climate data (Cox et al., 2018),
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FIG. 37: State dependence of the ECS: estimates from
proxy data and from climate models. The large number

of data sets, models and acronyms is detailed in the
von der Heydt et al. (2016) review paper. The ∆T on
the x-axis refers to the difference of the given T0 from
the pre-industrial value T00, i.e., T0 = T00 + ∆T ; the
S[CO2,LI] on the y-axis refers to sensitivity with respect

to CO2 concentration corrected for land-ice albedo
feedback. Mean values: for data – color-coded circles

with shaded probability density functions; for models –
squares with error bars. Reproduced with permission

from von der Heydt et al. (2016).

where one hopes to take advantage of general, and pos-
sibly universal, relationships between climatic variables.

In particular, the largest uncertainty in defining the
ECS for the current climate state is associated with the
difficulty in estimating correctly the strength of the two
main feedbacks associated with clouds (Bony et al., 2015;
Schneider et al., 2017). A warmer climate leads to in-
creased presence of water vapor in the atmosphere, and,
in turn, to more clouds. An increased cloud cover leads,
on the one side, to an increase in the climate system’s
albedo (cooling effect) and, on the other side, to a more
efficient trapping of longwave radiation near the surface
(warming effect). The balance between the two feedbacks
changes substantially according to the type of cloud, with
the cooling effect dominant for low-lying clouds, while the
warming effect is dominant for high-altitude ones. This is
a striking example of the multiscale nature of the climate
system: an extremely small-scale, short-lived dynamical
process — cloud formation — has a substantial effect on
the planet’s global and long-term energy budget.

Despite the highly simplified description above, it
should be clear that the ECS is a state-dependent in-
dicator. This state dependence is further supported by
the evidence in Figs. 36 and 37. In particular:

• Both the Planck response and the strength of
the feedbacks that determine the gain factor Λ in
Eq. (47) depend on the reference state T0. As an ex-
ample, in warmer climates where sea ice is absent,
the positive ice-albedo feedback is greatly reduced,

thus contributing to a smaller climate sensitivity.
On the other hand, in warmer climates the atmo-
sphere is more opaque as a result of the presence of
more water vapor, leading to a strong enhancement
of the greenhouse effect.

• The radiative forcing is only approximately lin-
ear with the logarithm of the CO2 concentration,
so that ∆R̃2×CO2

depends on the concentration’s
reference value. In fact, this dependence is weak
across a large range of CO2 concentrations, but it
is greatly strengthened by optical saturation effects
in the CO2 absorption bands;

• Near the moist greenhouse threshold, which corre-
sponds to a tipping point of the Earth system, the
ECS is greatly strengthened. Figure 36 shows that
for a solar irradiance comparable or stronger than
the present one, the peak in the value of the ECS is
realised at a surface temperature of about 320 K,
which corresponds to a lower CO2 concentration
in the case of weaker irradiance; see the discussion
in Gómez-Leal et al. (2018). Note that reaching
the moist greenhouse threshold for lower values of
the solar irrandiance requires exceedingly high CO2

concentrations.

While useful, the ECS concept faces practical difficul-
ties because its definition assumes that, after the forcing
is applied, the climate reaches a new steady state after
all transients have died out. Since the climate is multi-
scale in both time and space, it is extremely non-trivial
to define an effective cut-off time scale able to include all
transient behavior. Thus, a time scale of 100 years is long
compared to atmospheric processes, but short with re-
spect to oceanic ones that involve the deep ocean. While
a time scale of 5 000 years is long compared to oceanic
processes, but short with respect to cryospheric ones that
involve the dynamics of the Antarctic ice sheets. There-
fore, one needs to associate each ECS estimate from ob-
servational or model data to a reference time scale; see
Fig. 38 for an illustrative cartoon, and its discussion by
Members et al. (2012) and von der Heydt et al. (2016).

C. Transient Climate Response (TCR)

Transient climate response (TCR) has recently gained
popularity in the study of climate change and climate
variability because of its ability to help capture the time
dimension of climate change. TCR is defined as the
change in the globally averaged surface air temperature
recorded at the time at which CO2 has doubled due to
an increase at a 1% annual rate, i.e. roughly after 70
years, having started at a given reference value T0 (Otto
et al., 2013). The advantage of TCR over ECS lies in the
fact that it is operationally well defined, fits very well
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FIG. 38: Dependence of the effective ECS on the
reference time scale. Consideration of longer time scales
entails taking into account a larger set of slow climate

processes. Reproduced with permission from
http://www.realclimate.org/index.php/archives/

2013/01/on-sensitivity-part-i/.

with the standard IPCC-like simulation protocols; it has
the merit of addressing the transient, rather than asymp-
totic, response of the climate system to perturbations in
the CO2 concentration. Therefore, it is better suited to
test model outputs with observational data sets from the
industrial era.

As shown in Fig. 39, the TCR is found to be lower than
the ECS for a long time, because of the climate system’s
thermal intertia, which is dominated by the oceans’ heat
capacity. A smaller effective heat capacity c in Eq. (12a),
and hence a shorter relaxation time, would result in the
TCR catching up much faster with the ECS, as is the
case in regular diffusion process; see Fig. 40a. Assuming
linearity in the response, a relationship must clearly exist
between ECS and TCR. So far, this inference has been
based, by-and-large, on heuristic arguments of time scale
separation between climate feedbacks rather than being
rigorously derived (Otto et al., 2013); it will be derived
more systematically in Sect. IV.E herein.

D. Beyond Climate Sensitivity

The standard viewpoint on climate sensitivity dis-
cussed above is associated with the idea that the cli-
mate is in equilibrium, in the absence of external per-
turbations. In the setting of deterministic, autonomous
dynamical systems, this view can be described by the
change in the position of a fixed point, X0 = X0(µ), as
a function of a parameter µ.

We illustrate in Fig. 40 the difference between the ways
that a change in a parameter can affect a climate model’s
behavior in the case of equilibrium solutions, cf. panel
(a), vs. more complex dynamical behavior, cf. panels
(b) and (c). Assume that the climate state is periodic,
i.e., lies on a limit cycle, rather than being a fixed point,

FIG. 39: Transient climate response (TCR) estimates
from two climate models: (i) a coupled

atmosphere–ocean GCM (red curve) and (ii) a simple
illustrative model with no energy exchange with the

deep ocean (green curve). Time on abscissa from start
of CO2 concentration increase at pre-industrial levels,

with change in global mean temperature on the
ordinate. The “additional warming commitment”

corresponds to temperature stabilization at a given CO2

level, i.e., at 2× CO2 or at 4× CO2. Reproduced with
permission from IPCC (2001, Fig. 9.1).

as in panel (a). In this case, climate sensitivity can no
longer be defined by a single scalar, ∂T̄ /∂µ, but needs
four scalars — the sensitivity of the mean temperature
along with that of the limit cycle’s frequency, amplitude,
and phase — or more, e.g., the orbit’s ellipticity, too.

But the internal climate variability can be better de-
scribed in terms of strange attractors than by fixed points
or limit cycles. Moreover, the presence of time-dependent
forcing, deterministic as well as stochastic, introduces ad-
ditional complexities into the proper definition of climate
sensitivity. It is thus apparent that a rigorous definition
of climate sensitivity requires considerably more effort.

Ghil (2015) proposed to measure the change in the
overall properties of the attractor before and after the
change in forcing by computing the Wasserstein distance
dW between the two invariant measures. The Wasserstein
distance or “earth mover’s distance” dW quantifies the
minimum “effort” in morphing one measure into another
one of equal mass on a metric space, like an n-dimensional
Euclidean space (Dobrushin, 1970).

Monge (1781) originally introduced this distance to
study a problem of military relevance. Roughly speaking,
dW represents the total work needed to move the “dirt”
(i.e., the measure) from a trench you are digging to an-
other one you are filling, over the distance between the
two trenches. In general, the shape of the two trenches
and the depth along the trench — i.e., the support of the
measure and its density — can differ. Robin et al. (2017)
and Vissio and Lucarini (2018b) recently showed the ef-

http://www.realclimate.org/index.php/archives/2013/01/on-sensitivity-part-i/
http://www.realclimate.org/index.php/archives/2013/01/on-sensitivity-part-i/
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fectiveness of applying this idea to climate problems.

E. A General Framework for Climate Response

A major use of state-of-the-art climate models is to
produce projections of climate change taking into ac-
count different possible future scenarios of emission of
greenhouse gases and pollutants like aerosols, as well as
changes in land use, which has substantial impacts on the
terrestrial carbon cycle. Projections are needed not only
for quantities like the global average surface air temper-
ature, but on spatially and temporally detailed informa-
tion is needed for a multitude of practical needs; see, for
instance, Fig. 18.

The ECS concept is well suited for describing the prop-
erties of equilibrium solutions of heuristically simplified
equations of the climate system, like Eq. 12a, and has
clear intuitive appeal, as in Fig. 40a. But it also has
basic scientific limitations:

• it only addresses long term-climatic changes and no
detailed temporal information, an issue only par-
tially addressed by TCR information;

• it only addresses changes in the globally averaged
surface air temperature and no spatial information
at the regional scale and at different levels of the
atmosphere, of the ocean, and of the soil;

• it cannot discriminate between radiative forcings
resulting from different physical and chemical pro-
cesses, e.g. differences resulting from changes in
aerosol vs. GHG concentration; the two impact
quite differently shortwave and longwave radiation,
and different atmospheric levels.

We will thus try to address these shortcomings by tak-
ing the complementary points of view of nonequilibrium
statistical mechanics and dynamical systems theory. The
setting of nonautonomous and of stochastically forced dy-
namical systems allows one to examine the interaction
of internal climate variability with the forcing, whether
natural or anthropogenic; it also helps provide a gen-
eral definition of climate response that takes into account
the climate system’s nonequilibrium behavior, its time-
dependent forcing, and its spatial patterns.

1. Pullback Attractor (PBA)

The climate system experiences forcings that vary on
many different time scales (e.g., Saltzman, 2001), and its
feedbacks also act on multiple time scales (e.g., Ghil and
Childress, 1987). Hence, defining rigorously what climate
response to forcing, vs. intrinsic variability, actually is
requires some care: Observed variations can be related to
the presence of natural periodicities — such as the daily

and the seasonal cycle, and orbital forcings; to rapid,
impulsive forcings, such as volcanic eruptions; or to slow
modulations to the parameters of the system, as in the
case of anthropogenic climate change.

For starters, consider a dynamical system in continu-
ous time,

ẋ = F (x, t) (49)

on a compact manifold Y ⊂ Rd; here x(t) = φ(t, t0)x(t0),
with initial state x(t0) = x0 ∈ Y. The evolution opera-
tor φ(t, t0) is assumed to be defined for all t ≥ t0, with
φ(s, s) = 1, and it thus generates a two-parameter semi-
group. In the autonomous case, time-translational in-
variance reduces the latter to a one-parameter semigroup
since, ∀t ≥ s, φ(t, s) = φ(t − s). In the nonautonomous
case, in other terms, there is an absolute clock.

We are interested in forced and dissipative systems
such that, with probability one, initial states in the re-
mote past are attracted at time t towards A(t), a time-
dependent family of geometrical sets that define the sys-
tem’s pullback attractor (PBA). In the autonomous case,
A(t) ≡ A0 is the time-independent attractor of the sys-
tem, and it is known to support, under suitable condi-
tions, a physical measure µ(dx) (Eckmann and Ruelle,
1985; Ledrappier and Young, 1988).7

Such a PBA can also be constructed when random forc-
ing is present (e.g., Arnold, 1988, and references therein),

dx = F (x, t)dt+ g(x)dη, (50)

where η = η(t;ω) is a Wiener process, while ω labels the
particular realization of this random process, and dη(t)
is commonly referred to as “white noise.” The noise can
be multiplicative, and one then uses the Itô calculus for
the integration of Eq. (50).

In the random case, the PBA A(t;ω) is commonly re-
ferred to as a random attractor. A more detailed and
mathematically rigorous discussion of these concepts ap-
pears in Carvalho et al. (2013); Chekroun et al. (2011)
and Ghil et al. (2008, Appendix A). Careful numerical
applications of PBAs to explain the wind-driven circula-
tion and the THC are now available (Pierini et al., 2018,
2016; Sevellec and Fedorov, 2015).

In the purely deterministic case, the theory of nonau-
tonomous dynamical systems goes back to the skew-
product flows of Sell (1967). A concept that is closely re-
lated to PBAs is that of snapshot attractors; it was intro-
duced in a more intuitive and less rigorous manner into

7 Among invariant measures, a natural measure is one obtained by
flowing a volume forward in time, and a physical measure is one
for which the time average equals the ensemble average almost
surely with respect to Lebesgue measure; moreover physical im-
plies natural. A particular class of invariant measures of interest
are Sinai-Ruelle-Bowen (SRB) measures (e.g., Young, 2002), and
an important result is that, for a system with no null Lyapunov
exponents, an ergodic SRB measure is physical.
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FIG. 40: Climate sensitivity (a) for an equilibrium model; (b) for a nonequilibrium, oscillatory model; and (c) for a
nonequilibrium model featuring chaotic dynamics and stochastic perturbations. As a forcing (atmospheric CO2

concentration, say, blue dash-dotted line) changes suddenly, global temperature (red heavy solid) undergoes a
transition. (a) Only the mean temperature T̄ changes; (b) the amplitude, frequency, and phase of the oscillation
change, too; and (c) all the details of the invariant measure, as well as the correlations at all orders, are affected.

Reproduced from Ghil (2017), with permission from the American Institute of Mathematical Sciences.

FIG. 41: A cartoon depicting the pullback attractor
(PBA) for a nonautonomous system as in Eq. (49). The

set B of finite Lebesgue measure, initialized at time
t = t0 − τ , evolves towards the set A(t0). The

construction is exact in the limit τ →∞; for a random
attractor, see Ghil et al. (2008, Figs. A.1 and A.2).
Adapted from Sevellec and Fedorov (2015), with

permission.

the physical literature by Romeiras et al. (1990). Snap-
shot attractors have also been used for studying time-
dependent problems of climatic relevance (Bódai et al.,
2013, 2011; Bódai and Tél, 2012; Drótos et al., 2015).

Note that, in the most recent IPCC reports (IPCC,
2001, 2007, 2014a) and according to the standard proto-
cols described in Sect. II.D.2 , future climate projections
are virtually always performed using as initial states the
final states of sufficiently long simulations of historical
climate conditions. As a result, it is reasonable to as-
sume that the pullback time τ , as defined in Fig. 41, is
large enough, and that the covariance properties of the
associated A(t) sets are therefore well approximated.

2. Fluctuation Dissipation and Climate Change

The fluctuation-dissipation theorem (FDT) has its
roots in the classical theory of many-particle systems in
thermodynamic equilibrium. The idea is very simple: the
system’s return to equilibrium will be the same whether
the perturbation that modified its state is due to a small
external force or to an internal, random fluctuation. The
FDT thus relates natural and forced fluctuations of a
system (e,g., Kubo, 1957, 1966); it is a cornerstone of
statistical mechanics and has applications in many areas
(Marconi et al., 2008, and references therein).

We have emphasized already in Sect. III.B that, even
when the climate system is in a steady state, it is not at
all in thermodynamic equilibrium (e.g., Ghil, 2019; Lu-
carini and Ragone, 2011). Still, Leith (1975) showed that
FDT applies to a 2-D or QG turbulent flow with two inte-
gral invariants, kinetic energy E and enstrophy Z, under
some additional assumptions of normal distribution of
the realizations and stationarity. Soon thereafter, Bell
(1980) showed that the FDT still seemed to work for a
highly truncated version of such a model, even in the
presence of dissipative terms that invalidate the thermo-
dynamic equilibrium assumption.

The FDT has been applied to the output of climate
models to predict the climate response to a step-like in-
crease of the solar irradiance (North et al., 1993) as well
as to increases in atmospheric CO2 concentration (Cionni
et al., 2004; Langen and Alexeev, 2005), while Gritsun
and Branstator (2007) and Gritsun et al. (2008) used it to
predict the response of an atmospheric model to localised
heating anomalies. Most recently, Cox et al. (2018) tried
to reduce the uncertainty in the ECS discussed in Sect.
IV.B by a systematic FDT application to an ensemble of
model outputs, as well as to the observed instrumental



56

climate variability.

The FDT-based response of the system to pertur-
bations in the above examples reproduces the actual
changes at a good qualitative, rather than strictly quan-
titative level. An important limitation of these insightful
studies is the use of a severely simplified version of the
FDT that is heuristically constructed by taking a gaus-
sian approximation for the invariant measure of the un-
perturbed system. This approximation amounts to treat-
ing the climate as being in thermodynamic equilibrium;
see also Majda et al. (2009), who specifically address the
applicability of the FDT in a reduced phase space.

In order to address the problem of gaussian approxima-
tion, Cooper and Haynes (2011) proposed to construct a
kernel-based approximation of the actual invariant mea-
sure of the unperturbed system and then use Eq. (55)
below to construct the system’s Green function. This
approach has been applied successfully in a very low-
dimensional system, but its robustness may be limited
by the kernel’s arbitrary cut-off not being able to ac-
count for the smaller scales of the invariant measure’s
fine structure.

3. Ruelle Response Theory

FDT generalizations to systems out of equilibrium
have been developed since the early 1950s (e.g., Kubo,
1966). But a particularly fruitful change in point of view
was provided by D. Ruelle (Ruelle, 1998, 1999, 2009),
who considered the problem in the setting of dynamical
systems theory, rather than that of statistical mechanics.
The former point of view is justified in this context by
the so-called chaotic hypothesis (Gallavotti and Cohen,
1995), which states, roughly, that chaotic systems with
many degrees of freedom possess a physically relevant
invariant measure, as discussed in Sect. IV.E.1.

It is common in practice to assume that a time-
dependent measure µt(dx) associated with the evolution
of the dynamical system given by Eq. (49) does exist.
Still, computing the expectation value of measurable ob-
servables with respect to this measure is in general far
from trivial and requires setting up a large ensemble of
initial states in the Lebesgue measurable set B mentioned
before. Moreover, PBAs and the physical measures they
support only set the stage for predicting the system’s sen-
sitivity to small changes in the forcing or the dynamics.

Ruelle’s response theory allows one to compute the
change in the measure µ(dx) of an autonomous Axiom
A system due to a weak perturbations of intensity ε
applied to the dynamics, in terms of the unperturbed
system’s properties. The basic idea behind it is that
µ(dx) = µ(dx; ε) of such a system, even though sup-
ported on a strange attractor, is differentiable with re-
spect to ε. Lucarini (2016) discusses the radius of con-
vergence in ε of the theory and Baladi (2008) summarizes

its extensions and a different point of view on it.

The nonautonomous version of the Ruelle response the-
ory allows one to calculate the time-dependent measure
µt(dx) on the PBA by computing the time-dependent
corrections to it with respect to a reference state x(t) =
x̃(t). This provides a fairly general formulation for the
climate system’s response to perturbations.

Let us assume that we can write

ẋ = F (x, t) = F (x) + εX(x, t) (51)

where, ∀t ∈ R and ∀x ∈ Y ⊂ Rd, |εX(x, t)| � |F (x)|.
Hence, we can take F (x) as the background dynamics
and εX(x, t) as a perturbation. We only treat here the
case of deterministic dynamics; stochastic perturbations
are treated by Lucarini (2012). As shown by Lucarini
et al. (2017), we can restrict our analysis without loss
of generality to the separable case of F (x, t) = F (x) +
εX(x)T (t).

To evaluate the expectation value 〈Ψ〉ε(t) of a measur-
able observable Ψ(x) with respect to the measure µt(dx)
of the system governed by Eq. (49), one writes:

〈Ψ〉ε(t) =

∫
Ψ(x)µt(dx) = 〈Ψ〉0 +

∞∑
j=1

εj〈Ψ〉(j)0 (t); (52)

here 〈Ψ〉0 =
∫

Ψ(x)µ̄(dx) is the expectation value of Ψ
with respect to the SRB invariant measure µ̄(dx) of the
autonomous dynamical system ẋ = F (x). We will re-
strict ourselves here to the linear correction term, which
can be written as:

〈Ψ〉(1)
0 (t) =

∫ ∫ ∞
0

ΛSτ0 Ψ(x)T (t− τ)dτ µ̄(dx);

=

∫ ∞
0

G
(1)
Ψ,X(τ)T (t− τ)dτ. (53)

The Green’s function G
(1)
Ψ,X(τ) above is given by

G
(1)
Ψ,X(τ) =

∫
Θ(τ)ΛSτ0 Ψ(x)µ̄(dx), (54)

where Λ(•) = X · ∇(•) and St0(•) = exp(tF · ∇)(•) is
the semigroup of unperturbed Koopman operators8, (·)
denotes the inner product in Y, and the Heaviside distri-
bution Θ(τ) enforces causality. If the unperturbed invari-
ant measure dµ̄(x) is smooth with respect to the standard
Lebesgue measure, one has µ̄(dx) = µ̃(x)dx, with µ̃(x)

8 In discrete-time dynamics given by xk+1 = g(xk), the Koopman
operator is a linear operator acting on observables h : Y → R
via Uh(x) = h(f(x)). In continuous-time dynamics, like Eq. (49)
herein, this operator is replaced by a semigroup of operators, as
in Eq. (54) above; see Budivsić et al. (2012) for a good review.
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the density, and the Green’s function can be writen as
follows:

G
(1)
Ψ,X(τ) = Θ(τ)

∫
−∇ · (µ̃(x)X)

µ̃(x)
Sτ0 Ψ(x)µ̃(x)dx

= Θ(τ)C(Φ, Sτ0 Ψ); (55)

here Φ = − (∇ · (µ̃(x)X))/µ̃(x) and C(A,Sτ0B) is the τ -
lagged correlation between the variables A and B, and
the average of Φ vanishes. Note that Eq. (55) is the
appropriate generalization of the FDT for the nonau-
tonomous, out-of-equilibrium system (51).

Given any specific choice of the forcing’s time depen-
dency T (t) in Eqs. (51)–(53) and measuring the lin-

ear correction term 〈Ψ〉(1)
0 (t) from a set of experiments,

the same equations allow one to derive the appropri-
ate Green’s function. Therefore, using the output of a
specific set of experiments or of GCM simulations, we
achieve predictive power for any temporal pattern of the
forcing X(x).

Consider now the Fourier transform of Eq. (53):

〈Ψ〉(1)
0 (ω) = χ

(1)
Ψ,X(ω)T (ω), (56)

where we have introduced the susceptibility χ
(1)
Ψ,X(ω) =

F [G
(1)
Ψ,X ], defined as the Fourier transform of the Green’s

function G
(1)
Ψ,X(t). Under suitable integrability condi-

tions, the fact that the Green’s function G
(t)
Ψ,X is causal

is equivalent to saying that its susceptibility obeys the
so-called Kramers-Kronig relations (Lucarini and Sarno,
2011; Ruelle, 2009); these provide integral constraints

that link the real and imaginary parts, so that χ
(1)
Ψ,X(ω) =

iP(1/ω) ? χ
(1)
Ψ,X(ω), where i =

√
−1, ? indicates the con-

volution product, and P stands for integration by parts.
Extensions to the case of higher-order susceptibilities
are also available (Lucarini, 2008a, 2009a; Lucarini and
Colangeli, 2012; Lucarini et al., 2005b).

Instead of studying merely individual trajectories, one
can study the evolution of ensembles of trajectories to
obtain probabilistic estimates. The evolution of the mea-
sure ρ driven by the dynamical system ẋ = F (x) is
described by the transfer or Perron-Frobenius operator
Lt0 (Baladi, 2000; Chekroun et al., 2014; Villani, 2009),
which is the adjoint of the Koopman or composition op-
erator St0; it is defined as follows:∫

Lt0ρ(x)Ψ(x)dx =

∫
ρ(x)St0Ψ(x)dx. (57)

Assuming that no degenaries are present, the generator
of the semigroup {Lt0} is the so-called Liouville operator
L and it satisfies ∂tρ = −∇(ρF ) = Lρ.

Let {(σk, ρk) : k = 1, . . . ,∞} be the eigenpairs of L.
Then the eigenvalues of Lt0 are given by {exp(σkt)}, with
the same eigenvectors {ρk}. Correspondingly, the invari-
ant measure µ̄ is the eigenvector having the null eigen-
value σ1 = 0 for L or, ∀t ≥ 0, unit eigenvalue of Lt0.

Note that ∀k ≥ 2, <(σk) < 0, which implies exponential
decay of correlations for all the system’s smooth observ-
ables, with an asymptotic rate that is given by the largest
value of <(σk), k ≥ 2. Moreover, the presence of a small
spectral gap between the unit eigenvalue of Lt0 and its
other eigenvalues within the unit disk leads to a small
radius of expansion for Ruelle’s perturbative approach
(Chekroun et al., 2014; Lucarini, 2016).

It turns out that, if one neglects the essential part of
the spectrum, the susceptibility can be written as

χ
(1)
Ψ,X(ω) =

∞∑
k=1

αk{Ψ, X}
ω − σk

, (58)

where the factor αk evaluates how the response of the
system to the forcing X for the observable Ψ projects on
the eigenvector {ρk}. The constants πk = iσk are usu-
ally referred to as Ruelle-Pollicott poles (Pollicott, 1985;
Ruelle, 1986).9

4. Climate Change Prediction via Ruelle Response Theory

A somewhat different approach to constructing the cli-
mate response to forcings focuses on computing it di-
rectly from Eq. (54), without relying on the applicability
of the FDT, which fails in certain cases of geophysical rel-
evance (e.g., Gritsun and Lucarini, 2017). The difficulty
in applying this direct approach lies in the fact that the
formula contains contributions from both stable and un-
stable directions in the tangent space (Ruelle, 2009).

Evaluating the contribution of the unstable directions
is especially hard; hence, Abramov and Majda (2007)
proposed a blended approach that also uses the FDT.
Using adjoint methods in the direct approach has also
yielded promising results (Wang, 2013). Faced with the
so-called cold-start problem of climate simulations, Has-
selmann et al. (1993) suggested a heuristic approach to
computing a climate model’s Green’s function and ap-
plied it to study the relaxation to steady state of a cou-
pled GCM’s globally averaged surface temperatures.

Lucarini and associates (Lucarini et al., 2017; Lucarini
and Sarno, 2011; Ragone et al., 2016) proposed to eval-
uate the Green’s function using an experimental but rig-
orous approach, suggested by standard optics laboratory
practice (Lucarini et al., 2005b). The idea is to use a set

9 Note that Eq. (58) mirrors the quantum-mechanical expressions
for the electric susceptibility of atoms or molecules. In the lat-
ter case, the summation involves all the pairs of eigenstates of
the system’s unperturbed Hamiltonian operator; in each term,
the poles’ imaginary part corresponds to the energy difference
between the pair of considered eigenstates; and the real part is
the so-called line width of the transition, whose inverse is the
life time; finally, the numerator is its so-called dipole strength
(Cohen-Tannoudji et al., 2007).
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of carefully selected probe experiments — typically, step-
like increases of the parameter of interest — to construct
the Green’s function and then, exploiting Eq. (54), use
this operator to predict the response of the system to a
temporal pattern of interest for the forcing.

Given a set of forced climate simulations and a back-
ground unperturbed one, such an approach allows one to
construct the Green’s functions response operators for as
many observables as desired, global as well as local in
space. Such a toolkit allows one to treat a continuum of
scenarios of temporal patterns forcings, thus providing a
general framework for improving climate change projec-
tions given in the form shown in Fig. 18.

The idea is to consider the set of equations describing
an unperturbed climate evolution in the form ẋ = F (x),
with the vector field X = X(x) in Eq. (51) as the 3-
D radiative forcing associated with the increase of CO2

concentration, and εT (t) its time modulation. By plug-
ging T (t) = εΘ(t) into Eq. (53), we have, for any climatic
observable Ψ,

d

dt
〈Ψ〉(1)

0 (t) = εG
(1)
Ψ,[CO2](t). (59)

We estimate 〈Ψ〉(1)
0 (t) by taking the system’s average of

response over an ensemble of initial states and use the

previous equation to derive our estimate of G
(1)
Ψ,[CO2](t),

by assuming linearity in the response.
Note that these Green’s functions are specifically re-

lated to changes in the atmospheric CO2 concentration,
rather than to a generic radiative forcing. Indeed, for
each climatic variable, the response to changes in the so-
lar irradiance — e.g., via modulation of the parameter
µ in Eqs. (12) — is different from the impact of changes
in the CO2 concentration, because the details of the ra-
diative forcing are very different in the two cases. Thus,
geoengineering proposals that aim to reduce solar irra-
diance by injecting sulphate aerosols in the stratosphere
(e.g., Smith and Wagner, 2018) rely on flawed scientific
reasoning (Bódai et al., 2018; Lucarini, 2013), as well as
being of dubious practical help (Proctor et al., 2018) and
hardly defensible from an ethical perspective (Lawrence
et al., 2018).

Ragone et al. (2016) derived, moreover, a closed for-
mula relating the TCR and the ECS. Indeed, with the
definition of TCR(τ) given at the beginning of Sect. IV.C
, one gets

ECS − TCR(τ) = INR(τ)

= ∆R̃2×CO2
× P

∫ ∞
−∞

χ
(1)
TS ,[CO2](ω

′)

1 +
sin(ω′τ/2)

ω′τ/2
exp[−iω′τ/2]

2πiω
dω′. (60)

The difference between ECS and TCR is a weighted inte-
gral of the susceptibility, accounting for the contribution

FIG. 42: Comparison between the climate model
simulation (black) and response theory prediction

(blue) for a TCR experiment using PLASIM, a GCM of
intermediate complexity. The CO2 concentration was
ramped up by 1% per year to double its initial value.

The upper and lower limit of the light-shaded bands are
computed as two standard deviations of the ensemble

distribution. Reproduced with permission from
(Lucarini et al., 2017).

of processes and feedbacks occurring at different time

scales. The integral in Eq. (60) yields χ
(1)
TS ,[CO2](0) if

τ → 0 (i.e., TCR(0) = 0), decreases with τ , and van-
ishes in the limit τ → ∞. INR(τ) is a measure of the
system’s inertia at the time scale τ , due to the overall
contribution of the internal physical processes and char-
acteristic time scales of the relevant climatic subsystems.

Figure 42 illustrates a climate prediction obtained by
applying the response theory above to the open-source
model PLASIM (see http://tiny.cc/zgk0bz), an at-
mospheric GCM of intermediate complexity coupled with
a mixed-layer ocean model (Fraedrich, 2012; Fraedrich
et al., 2005). The figure shows a good agreement be-
tween (a) the ensemble average of 200 simulations where
the CO2 concentration is increased at the rate of 1% un-
til doubling (black curve), and then kept constant; and
(b) the prediction done by convolving the Green’s func-
tion of Eq. (59) with the time pattern of the forcing (blue
curve). Note that the temperature increase predicted at
year 70, when doubling of the CO2 is reached, gives as
estimate the TCR ' 4.1 K (blue curve). The true value
of the TCR ' 4.3 K is given by the black line. The
TCR is indeed smaller than the ECS ' 4.8 K, which
corresponds to a good approximation to the temperature
increase predicted at year 200.

The power of response theory lies in the fact that —
once the Green’s function of interest has been computed
— one can predict the future evolution of bespoke observ-
ables, defined as needed. Furthermore, Lucarini (2018)
has shown that it is possible to use certain classes of
observables as surrogate forcings of other observables,
in the spirit of the linear feedback analysis of Eq. (43).

http://tiny.cc/zgk0bz
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FIG. 43: Patterns of climate response for the zonal
average of the surface temperature. (a) Prediction via

response theory (red and black lines not relevant in this
context). b) Difference between the ensemble average of

the direct numerical simulations and the predictions
obtained using the response theory. Reproduced with

permission from (Lucarini et al., 2017).

Given the notoriously more difficult prediction of precipi-
tation, Lucarini et al. (2017) have found that predictions
of changes in the globally averaged precipitation can be
as good as those of the temperature.

Proceeding from global predictions to more localized
ones, Fig. 43 shows the outcome of predicting the change
in the zonal averages of the surface temperature. It is
clear that response theory does a good job in reproduc-
ing the spatial patterns of temperature change, except
for an underestimate of the temperature change in the
high latitudes on the scale of few decades. Indeed, such
mishap is due the strong polar amplification of the warm-
ing due to the ice-albedo feedback, which can only qual-
itatively captured by a linear approach like the one used
by Lucarini et al. (2017).

5. Slow Correlation Decay and Sensitive Parameter Dependence

Equation (58) implies that resonant amplification oc-
curs if the forcing acts a a frequency ω that is close to the

FIG. 44: Rough dependence (red dots) of the skewness
of the equatorial ocean temperature’s distribution with
respect to changes in the parameter δ that controls the
travel time of equatorially trapped waves in a simplified
ENSO model; see text for details. Black points refer to
nonchaotic windows where the parameter dependence is
smooth; blue points indicate particularly sharp jumps in

the parameter dependence. Reproduced with
permission from Chekroun et al. (2014).

imaginary part of a subdominant Ruelle-Pollicott pole
πk, k ≥ 2 that has a small real part, i.e., for some k ≥ 2,

|ω −=(πk)| � ω, |<(πk)| � 1, (61)

because the system’s susceptibility is greatly enhanced
at such an ω. Conditions (61) are easily satisfied for a
broadband forcing and a system that has a small spectral
gap. Conversely, as discussed after Eq. (57), the presence
of a small spectral gap is associated with a slow decay of
correlation for smooth observables. We now provide two
examples that show how linear response breaks down for
forced systems possessing slow decay of correlations due
to a small spectral gap in the unperturbed dynamics.

The first example is due to Chekroun et al. (2014),
who investigated the response of the highly simplified
ENSO model of Jin and Neelin (1993), to which Jin et al.
(1994) added periodic forcing that led to chaotic behav-
ior. Chekroun and coauthors focussed on how the re-
sponse changes when one varies the model parameter δ
that controls the travel time of the equatorially trapped
waves, which play an essential role in the ENSO mecha-
nism. Chekroun et al. (2014) found that when the spec-
tral gap is small, the system exhibits rough dependence
of its properties with respect to small modulations of the
parameters, since Ruelle’s perturbative expansion breaks
down even for a very small intensity of the forcing.

The second example shows the importance of correla-
tion slowdown near saddle-node bifurcation points in the
PLASIM model discussed already in the previous subsec-
tion. This intermediate-complexity model is multistable:
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its bifurcation diagram with respect to the solar insola-
tion parameter µ is very similar to Fig. 21 of Sect. III.A
see Lucarini et al. (2010a, 2013). PLASIM’s bifurcation
diagram is reproduced in Fig. 45a here, in which the
present climate S = S0 = 1360 Wm−2 is denoted by
a bullet • and the bifurcation points associated with the
transition from the warm to the snowball state (W−SB)
and from the snowball to the warm state (SB −W ) are
indicated by solid arrowheads N. For comparison with
Fig. 21, note that µ = S/S0 there.

Tantet et al. (2018) investigated PLASIM’s response to
changes in the solar irradiance for S < S0. They found
that as the W − SB transition nears, the lag correla-
tion for a large-scale observable — namely the average
equatorial near surface air temperature — decays more
and more slowly, as a result of a narrowing spectral gap.
Indeed, near the saddle-node bifurcations, the response
of the system to perturbations is greatly amplified, and,
by definition, becomes singular exactly at the bifurcation
point.10

This second example leads us naturally to the investi-
gation of the climate system’s global stability properties
and of its critical transitions, which are the the subject
of the next section.

V. CRITICAL TRANSITIONS AND EDGE STATES

In Sect. III, we introduced several types of bifurcations
that involve transitions between two or more regimes:
saddle-node bifurcations whose pairing can lead to coex-
istence of two stable steady states (fixed points); pitch-
fork bifurcations that, in the presence of a mirror sym-
metry, can lead from one stable symmetric steady state
to the coexistence of two steady states that are mirror
images of each other; Hopf bifurcations that lead from
a stable steady state to a stable periodic solution (limit
cycle) and then again from the stable limit cycle to a
stable torus on which an infinity of quasi-periodic solu-
tions live; and nonlocal bifurcations associated with the
existence of homoclinic and heteroclinic orbits that lead
on to chaotic regimes.

Successive bifurcation scenarios (Dijkstra, 2013; Di-
jkstra and Ghil, 2005; Eckmann, 1981; Ghil and Chil-
dress, 1987) that involve several of these bifurcations and

10 Scheffer et al. (2009) have proposed a set of “warning signals”
when a dynamical system approaches a critical transition. Cor-
relation slowdown is one of the main ones and it is verified in
the present case for the back-to-back saddle-node bifurcations
that make up the backbone of the PLASIM model’s hystere-
sis cycle. Colon et al. (2015), though, have found that — in a
predator–prey system, modeled by an ODE system as well as by
an agent-based mode — more complex critical transitions can
behave rather differently than in the by-and-large saddle-node–
bound early warning literature.

a)

b)

FIG. 45: Slowdown of correlations near a saddle-node
bifurcation point in the PLASIM model. (a) The

model’s bifurcation diagram as a function of the value
of the solar irradiance S. The critical transitions

Warm-to-Snowball and Snowball-to-Warm as well as
the present-day conditions are indicated. Reproduced

with permission from Lucarini et al. (2010a). (b) Decay
of correlation of the equatorial mean surface

temperature for various values of the solar irradiance S.
The decay becomes considerably slower as S approaches
the critical value of S ' 1265 Wm−2. Reproduced with

permission from Tantet et al. (2018).

additional ones lead from solutions with high symme-
try in space and time to successively more complex and
chaotic ones. We saw in Sect. III that such bifurcation
scenarios shed considerable light on the phenomenology
of large-scale atmospheric, oceanic and coupled ocean–
atmosphere flows. Finally, in Sects. III.G and IV.E, we
introduced stochastic effects into the nonlinearly deter-
ministic setting recalled above, and outlined the role of
pullback attractors (PBAs) and of the invariant measures
they support in the theory of nonautonomous and ran-
dom dynamical systems (NDSs and RDSs).

Recently, the interest in bifurcations in the climate
and environmental sciences has greatly increased due to
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the introduction of the concept of tipping points from
the social sciences (Gladwell, 2000; Lenton et al., 2008).
Clearly, a tipping point sounds a lot more threatening
than a bifurcation point, especially when dealing with a
hurricane or a dramatic and irreversible climate change.

Beyond the linguistic effectiveness of the term, it does
also generalize the bifurcation concept in the context of
open systems that are modeled mathematically by NDSs
or RDSs. As we saw in Sects. III and II, the climate
system — as well as its subsystems, namely the atmo-
sphere, oceans, biosphere and cryosphere — are open and
exchange time-dependent fluxes of mass, energy and mo-
mentum with each other and with outer space. Hence it is
quite appropriate to consider this generalization. Follow-
ing Ashwin et al. (2012), one distinguishes among three
kinds of tipping points, as shown in Table II.

The investigation of systems possessing multiple at-
tractors — which may include fixed points, limit cycles,
strange attractors as well as PBAs or random attractors
— is an active area of research, encompassing mathemat-
ics, as well as the natural and socio-economic sciences.
Feudel et al. (2018), for instance, provide a brief review
that introduces a special issue of the journal Chaos on
the topic and sketch several interesting examples.

This section is devoted to providing a general frame-
work for the study of multistability in the Earth system,
to forced transitions between different regimes when mul-
tistability is present, and to the critical transitions taking
place at classical bifurcation and more general tipping
points. Recall, for motivation, two cases of multistablil-
ity in the climate system.

First, planet Earth as a whole has boundary conditions
that arise from its space environment in the solar system,
which are compatible with at least two competing, sta-
ble regimes: today’s relatively ice-free and warm climate
and a deep freeze or snowball climate; see Sect. III.A.
Second, the oceans’ THC is — over a rather broad range
of the parameters that control its heat and freshwater
budget — bistable, with the current active state coexist-
ing with a greatly reduced or even reversed circulation;
see Sect. III.C.

In order to illustrate the main mathematical and phys-
ical aspects of the problem, we choose at first the specific
example of coexistence between the warmer, Holocene-
like, and the much colder, snowball state of planet Earth,
as discussed in Sects. III.A and IV.E.5; see, in particular,
Figs. 21 and 45a.

A. Bistability for Gradient Flows and EBMs

The theory of SDEs and of RDSs provides a compre-
hensive framework for deriving the probability of occur-
rence of coexisting regimes in multistable systems and for
estimating the probability of stochastic-forcing–triggered
transitions between them. A good starting point is gra-

FIG. 46: Schematic diagram of B-Tipping: as a control
parameter is being changed slowly, the number of stable
equilibria is reduced from two to one. Reproduced with

permission from Lenton et al. (2008).

dient flow in the presence of additive white noise.
The governing SDE in this case is:

dx = −∇xV (x)dt+ εdW, (62)

where x ∈ Rd, the potential V : Rd → R is sufficiently
smooth, and dW is a vector of d independent increments
of Brownian motion, while ε determines the strength of
the noise. The Fokker-Planck equation associated with
Eq. (62) describes the evolution of the PDF pε(x, t) of an
ensemble of trajectories obeying the SDE.

In the weak-noise limit ε → 0, the stationary solution
corresponding to the latter equation’s invariant measure
limt→∞ pε(x, t) = pε(x) is given by a large-deviation law
(Varadhan, 1966):

pε(x) =
1

Z
exp

(
−2V (x)

ε2

)
(63)

where Z is a normalization constant. The local minima
of the potential V are the stable fixed points of the de-
terministic dynamics. One obtains them by setting ε = 0
in the SDE (62), and they correspond to the local max-
ima of p. Thus, for instance, the double-well potential of
Fig. 20 corresponds to a bimodal PDF.

The mountain pass lemma (e.g., Bisgard, 2015) states
that the two minima of V that give rise to the two stable
fixed points have to be separated by an unstable one
of the saddle type, which is a maximum of V in one
direction and a minimum in all the other ones. Such a
saddle looks like a mountain pass on a topographic map,
hence the name of the lemma. Ghil and Childress (1987,
Sec. 10.4) discussed its application to 1-D EBMs.

In the limit of weak noise, trajectories starting near a
local minimum of V located at x = x1 typically wait a
long time before moving to the neighborhood of a differ-
ent local minimum of V . The transitions are most likely
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Type Cause Mechanism

B-Tipping Bifurcation-due tipping Slow change in a parameter leads to the system’s passage
through a classical bifurcation

N-Tipping Noise-induced tipping Random fluctuations lead to the system’s crossing an at-
tractor basin boundary

R-Tipping Rate-induced tipping Due to rapid changes in the forcing, the system loses track
of a slow change in its attractors

TABLE II: Tipping points in open systems; see also Ashwin et al. (2012) and Fig. 46.

to occur through the lowest energy saddle x = xs that
links the initial basin of attraction to any other basin.
Let us call the corresponding local minimum x = x2.

The optimal path linking x1 to xs minimizes the Frei-
dlin and Wentzell (1984) action and is called an instan-
ton. At leading order, the persistence time inside the
basin of attraction of x = x1 is

τ̄ε ∝ exp

(
2(V (xs)− V (x1))

ε2

)
, (64)

which is referred to as the Kramers (1940) formula.
Assume now, for simplicity, that we deal with a

bistable system, as in Fig. 20 of Sect. III.A. If the po-
tential V depends on a slowly varying control parameter
φ, a B-tipping would involve, for instance, the number of
local minima decreasing from 2 to 1, as a local minimum
merges with a saddle point at φ = φc. This merging is
illustrated in Fig. 46 for a simple 1-D case, like that of
the 0-D EBM governed by Eqs. (12)11.

When the system nears the tipping point, the persis-
tence time in the shallow, metastable minimum is re-
duced, because ∆V ≡ Vs − V1 → 0. Another flag an-
ticipating the tipping point is the increase of the auto-
correlation time τ in the metastable state, which is pro-
portional to the inverse of the second derivative of the
potential evaluated at the minimum, τ̄ε ∝ 1/V ′′x1

.
These two easily observable phenomena are the sim-

plest manifestation of the slowing-down process (Schef-
fer et al., 2009), which we have discussed already in
Sect. IV.E.5 when describing the findings of Tantet et al.
(2018). As indicated in the footnote there, the warning
signals of tipping-point approach have been mostly stud-
ied in the B-tipping case for saddle-node bifurcations.
Much remains to be done in this context for more com-
plex situations that may involve N-tipping, R-tipping
or global bifurcations rather than local ones. For in-
stance, Ditlevsen and Johnsen (2010) analyzed a high-
resolution ice core record and excluded the possibility of
interpreting Dansgaard-Oeschger events as B-tipping by
noting the lack of the two early warning signals men-
tioned above. Their results leave us with the alternative

11 Note that the number of dimensions in phase space is 1, while
that of the model in physical space is 0.

of interpreting the associated irregular oscillations (e.g.,
Boers et al., 2018) either as the result of N-tipping for an
S-shaped back-to-back saddle-node bifurcation or as B-
tipping for a Hopf bifurcation; see Fig. 29 and its discus-
sion in Sect. III.E.3 for similar ambiguities in interpreting
changes in atmospheric LFV.

Returning to the right-hand side of the 0-D EBM of
Eq. (12a), it can be written as minus the derivative of a
potential V (T ), cf. Ghil (1976). The gain factor Λ given
in Eq. (46), as well as the ECS, is proportional to the in-
verse of the second derivative of the potential V evaluated
at the local minimum defining the reference climate T0,
ECS ∝ Λ ∝ 1/V ′′T0

. Hence, near the critical transition, a
small forcing in the right direction can lead the system to
jump to the other basin of attraction, even in the absence
of noise. Note, though, that, near such a transition, the
linear stability analysis performed in Eqs. (45, 46) is no
longer valid, and an accurate quantitative analysis of cli-
mate response requires taking into account the essential
nonlinearity in the problem; see the Zaliapin and Ghil
(2010) comments on Roe and Baker (2007).

Determining the saddle point that potentially con-
nects, via instantons, two local minima is not at all trivial
when looking at high- or even infinite-dimensional sys-
tems. Figure 47 reports the findings of Bódai et al. (2015)
on the Ghil (1976) 1-D EBM. Panel (a) shows the bifurca-
tion diagram of the model, in which the control variable is
the globally averaged surface air temperature T̄ , and the
tuning parameter is the insolation parameter µ = S/S0

introduced in Eq. (12b).

Panel (b) shows the zonally averaged temperatures of
the 1-D model’s steady states, for the reference condi-
tions T = T (x) at µ = 1. The red and blue lines repre-
sent the two stable solutions — warm (W ) and snowball
(SB), respectively — while the green line is the unsta-
ble solution lying in-between. Note that, at each tipping
point, the unstable state comes in contact with a sta-
ble one, and then both disappear, in accordance with the
scenario of basin boundary crisis (Ott, 2002). In fact, the
lack of stability of the steady-state solution described by
the green line is apparent by observing that T̄ in Fig. 47a
decreases with increasing solar radiation — as opposed
to the W and SB states — which is clearly not physi-
cal (Ghil, 1976; North et al., 1981) and can be loosely
interpreted as the result of a negative heat capacity; see
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a)

b)

FIG. 47: Bistability for the Ghil-Sellers 1-D EBM. (a)
Simplified bifurcation diagram for the Ghil (1976) 1-D

EBM; compare Figs. 21 and 45. The red, blue, and
green segments correspond to the globally averaged
surface air temperature for the warm, snowball, and
Melancholia state, respectively, as a function of the

relative solar irradiance µ; see also Arcoya et al. (1998).
(b) Meridional temperature profile for the warm (red),

snowball (blue), and M -state (green) for this model
under present-day conditions (µ = 1), with the sine of
latitude on the x-axis; compare Ghil (1976, Fig. 3a).
The circles indicate the M -state estimate obtained

using the edge tracking method. Adapted with
permission from Bódai et al. (2015).

discussion in Bódai et al. (2015).

B. Finding the Edge States

In one phase space dimension, every first-order system
ẋ = f(x;µ) is a gradient system, since one can always
write V (x;µ) = −

∫
f(ξ, µ)dξ. This is not so in two

or more dimensions and one might wonder whether it is
possible to compute unstable solutions for more general
multistable systems, with no gradient property. Scott
et al. (1999) presented an example of such an unstable
stationary solution in a simple box model of the THC fea-
turing competing stable solutions and no gradient struc-
ture. Moreover, the actual computation of the unsta-
ble steady state in Ghil (1976, Fig. 3a) did not rely on

FIG. 48: Schematic diagram of the edge tracking
algorithm proposed by Skufca et al. (2006) and

Schneider et al. (2007), as applied to the 1-D EBM of
Fig. 47. Reproduced with permission from Bódai et al.

(2015).

the system’s potential V (T (x)) but on its 1-D charac-
ter in physical space and on a shooting method to solve
the Sturm-Liouville equation that results when setting
∂T (x, t)/∂t ≡ 0 in the Ghil-Sellers model. Neither of
these approaches (Ghil, 1976; Scott et al., 1999) can eas-
ily be extended to more general systems.

In the remainder of this section, we discuss a more
general paradigm of multistability for determininistic sys-
tems and, subsequently, how this paradigm may be useful
for studying the problem of noise-induced transitions be-
tween competing states, without the simplifying assump-
tion of a gradient, as in Eq. (62).

One can formally introduce general multistable sys-
tems as follows. We consider a smooth autonomous
continuous-time dynamical system acting on a smooth
finite-dimensional compact manifold M, described by a
ODE system of the form ẋ = F (x). The system is multi-
stable if it possesses more than one asymptotically stable
state, defined by the attractors {Ωj : j = 1, . . . , J}. The
asymptotic state of an orbit is determined by its initial
state, and the phase space is partitioned between the
basins of attraction {Bj} of the attractors {Ωj} and the
boundaries {∂B`: ` = 1, . . . , L} separating these basins.

The basin boundaries can be strange geometrical ob-
jects with codimension smaller than one. Orbits initial-
ized on the basin boundaries {∂B`} are attracted to-
wards invariant saddles that are the edge states {Π`:
` = 1, . . . , L}. In the general case of nongradient flows,
the edge states, like the asymptotic states, can feature
chaotic dynamics (Grebogi et al., 1983; Ott, 2002; Robert
et al., 2000; Vollmer et al., 2009). Lucarini and Bódai
(2017, 2019a,b) refer to the chaotic edge states as Melan-
cholia (M) states. Hence we cannot expect to find easily
edge states and, a fortiori, M -states for such general mul-
tistable systems.
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The edge tracking algorithm of B. Eckhart, J. A. Yorke
and associates (Schneider et al., 2007; Skufca et al., 2006)
allows one to do so by constructing a shadowing trajec-
tory that leads an orbit starting on the basin boundary
toward the corresponding edge state, cf. Fig. 48; therein
one uses a bisection method to control the instability
associated with the trajectories’ diverging away from the
basin boundary. Bódai et al. (2015) first used edge track-
ing in a geophysical context to reproduce the unstable so-
lution of Ghil (1976) with this more easily generalizable
approach; compare green line and circles in Fig. 47b.

Lucarini and Bódai (2017) computed M -states for an
intermediate complexity climate model with O(105) de-
grees of freedom that couples PUMA, an atmospheric
primitive equations model (Frisius et al., 1998) with a
modified version of the 1-D EBM of Ghil (1976) that
acts as a surrogate ocean and contributes to meridional
heat transport. Figure 49 shows the bifurcation diagram
of this climate model, where the W → SB tipping point
is located near µ = 0.98, while the SB → W tipping
point is located near µ = 1.06. Just as in the 1-D EBM
of Fig. 47, the tipping points are associated with basin
boundary crises (Ott, 2002).

Over a wide range of µ-values, the edge state fea-
tures chaotic dynamics that arises from the atmospheric
model’s baroclinic instability; it leads to weather vari-
ability and to a limited predictability horizon. Since this
instability is much faster than the climatic one due to
the ice-albedo feedback, the basin boundary is a fractal
set with near-zero codimension, in agreement with results
obtained in low-dimensional cases (Grebogi et al., 1983;
Lai and Tél, 2011). In other words, the basin boundary
has almost full Lebesgue measure. As a result, near the
basin boundary there is virtually no predictability on the
asymptotic state of the system, because infinitesimally
close initial states have a high probability of belonging
to separate basins of attraction.

C. Invariant Measures and Noise-induced Transitions

As mentioned above, transitions across the basin
boundaries of competing attractors are possible and quite
likely in the presence of stochastic perturbations. Noise-
induced escape from an attractor has, in fact, long been
studied in the natural sciences (e.g., Grassberger, 1989;
Hanggi, 1986; Kautz, 1987).

Let us generalize Eq. (62) as follows:

dx = F (x)dt+ εs(x)dW ; (65)

here x ∈ Rd, F (x)dt is the drift term given by a vector
flow field that admits multiple steady states, as discussed
in the previous two subsections, dW are the increments
of a d-dimensional Brownian motion. The volatility ma-
trix s(x) ∈ Rd×d is such that s(x)T s(x) is the covariance

FIG. 49: Bifurcation diagram for the
intermediate-complexity climate model studied by

Lucarini and Bódai (2017), drawn for the long-term,
globally averaged ocean temperatures [〈TS〉]. Bistability

is found for a large range of values of the control
parameter µ = S/S0. The relevant solid lines are red for
the Warm W -states, blue for the Snowball SB-states,
and green for the Melancholia M -states, as in Fig. 47.
Reproduced with permission from Lucarini and Bódai

(2019a).

matrix of the noise. Finally, the parameter ε ≥ 0 controls
the noise intensity.

Recent extensions of the classical Freidlin-
Wentzell (Freidlin and Wentzell, 1984) theory (Graham
et al., 1991; Hamm et al., 1994; Lai and Tél, 2011) yield
results that mirror closely those summarized before
in the case of gradient flows with additive noise, cf.
Eqs. (63) and (64), given suitable assumptions on the
drift term and the volatility (e.g., Lucarini and Bódai,
2019a,b). In the weak-noise limit given by ε → 0, the
invariant measure of the system can be written as a
large-deviation law. Formally, one just has to replace
V (x) by a general pseudo-potential Φ(x), which depends
in a nontrivial way on F (x) and s(x). Moreover, the
constant Z in Eq. (63) is replaced by a function ζ(x),
which is relatively unimportant because the behavior of
the system depends mostly on the properties of Φ(x).

Certain general properties of Φ(x) apply to all choices
of the noise law and, once a noise law is chosen, one can
derive how the properties of the system change as a func-
tion of the parameter ε. In general, regardless of the noise
law, Φ(x) has local minima supported on the attractors
{Ωj : j = 1, . . . , J} of the deterministic dynamics. Cor-
respondingly, the invariant measure has local maxima on
the attractors. Moreover, Φ(x) has a constant value on
the support of each edge state Π` and each attractor Ωj ,
respectively.

In the simplest case of just J = 2 attractors and L = 1
edge states then, in the weak-noise limit, transitions away
from either attractor basin take place exponentially more
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FIG. 50: Invariant measure of the transitions between
the two stable regimes of the stochastically perturbed
climate model of Lucarini and Bódai (2017) via the
M -state separating them, for µ = 1. Main graph:

projection of this invariant measure on the reduced
space (TS , [∆TS ]); W attractor – red dot; SB attractor

– blue dot; and M -state – green dot. Red and blue
dashed lines plot the W → SB and the SB →W

instanton, respectively. Top left inset: marginal PDF
with respect to ∆TS ; bottom right inset: marginal PDF
with respect to [TS ]; and center right inset: probability
along the two instantons. Reproduced with permission

from Lucarini and Bódai (2019a).

likely along the instanton connecting the corresponding
attractor with the edge state Π1. Just as for the gradi-
ent flows in Sect. V.A, instantons can be calculated as
minimizers of a suitably defined action (Beri et al., 2005;
Grassberger, 1989; Kautz, 1987; Kraut and Feudel, 2002).

Consider now the case that more than one edge state
separate a given Ωj from the other attractors {Ωk : k 6=
j}. Let us denote then by Πj the edge state for which the
value of Φ is lowest. In this case, the most probable exit
path connects Ωj with Πj , while the other escape chan-
nels are basically switched off in the weak-noise limit.

Note that, if the attractors and the edge states are
more complex sets than isolated points, the instantons
connecting them are not unique, because in principle any
point of the attractor can be linked by an instanton to
any point of the edge state, because the pseudo-potential
is constant on Ωj and Πj . Indeed, the edge states are the
gateways for the noise-induced escapes from the deter-
ministic basins of attraction, as illustrated in the bistable
example with nongradient flow given below.

Lucarini and Bódai (2019a) introduced stochastic forc-
ing into the climate model studied by Lucarini and Bódai
(2017) as a fluctuating factor of the form 1 + εdW/dt,
where dW is a Brownian motion that modulates the so-
lar insolation parameter µ. This forcing yields a mul-
tiplicative noise law because the energy input into the
system depends on the product of µ times the co-albedo

(1 − α), where the albedo α = α(T ) depends explicitly
on the surface air temperature T = T (x, t)), which is a
state variable of the model; compare with Eq. (12b).

In Fig. 50 we reproduce the estimate by Lucarini and
Bódai (2019a) of a 2-D projection of the invariant mea-
sure for µ = 1 from a climate simulation of ' 6.0×104 yr
with fluctuations in the solar insolation of 1.5% on the
scale of 100 yr. The simulation features 92 SB →W and
W → SB transitions, and the measure is projected onto
the ([TS ],∆TS)-plane; here [TS ] is the globally averaged
surface air temperature, and ∆TS measures the temper-
ature difference between the surface temperature in the
low- and high-latitude regions.

The peaks of the PDFs are very close to the W and
SB attractors, and the agreement improves even further
when considering the two marginal PDFs (top left and
bottom right insets). We can also estimate both the
W → SB and the SB → W instantons, whose start-
ing and final points agree remarkably well with the at-
tractors and the M -state. The instantons follow a path
of monotonic descent that tracks closely the crests of the
PDF, with the minimum occurring at theM -state. These
features are all in excellent agreement with the theoreti-
cal predictions for multistable systems with a generalized
pseudo-potential.

D. Nearing Critical Transitions

The general framework outlined in the previous sub-
section is also quite useful for studying the properties
of such systems near a critical transitions, as shown, for
example, by Lucarini and Bódai (2019a). In Fig. 49, it
is clear that µ = 0.98 is close to the W → SB tipping
point. One finds that at low noise intensities — i.e., at a
relative µ-fluctuation smaller or equal to 1.4% on a cen-
tennial scale — it is extremely hard to escape from the
SB state. This finding happens to agree with snowball
state simulations that used more detailed models as well
(e.g., Crowley et al., 2001; Ghil, 2019; Pierrehumbert,
2004)

Let us then focus on the escape from the W -state. Lu-
carini and Bódai (2019a) estimated the expected value
of the transition times from the W to the SB state us-
ing 50 simulations per chosen value of noise strength.
These values grow exponentially with the inverse of the
square of the parameter ε, as predicted by the theory; see
Fig. 51a. Note that the difference between the pseudo-
potential value Φ at the M -state and at the W -state is
equal to half the slope of the straight line, in agreement
with Eq. (64).

Finally, the escape transition paths from the W -state
to the M -state are plotted in Fig. 51b. In the weak-
noise case of relative µ fluctuation smaller than 1% on a
centennial scale, the highest densities of these paths lie
quite close to the instanton connecting theW attractor to
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FIG. 51: Escape from the W attractor near the
W → SB critical transition of the stochastically

perturbed climate model of Lucarini and Bódai (2017),
for µ = 0.98. (a) The expected value of the transition

time obeys Eq. (64) in the weak-noise regime; the
diagram is in log–linear coordinates and σ on the x-axis
is the relative fluctuation of the solar insolation µ. (b)
Estimate of the W → SB instanton and, in the inset,

empirical density; both used 50 trajectories that escape
to the SB state. Reproduced with permission from

Lucarini and Bódai (2019a)

the M -state, and follow a path of decreasing probability.

These encouraging results suggest that the underly-
ing methodology of edge tracking and instanton esti-
mation could be applied to observational and reanaly-
sis data sets. As discussed in Sect. III.E.3 the episodic,
or ‘particle’, approach to atmospheric LFV results in a
Markov chain of regimes {Rj : j = 1, . . . , J} that involves
preferential transition paths {Θj,k : j = 1, . . . , J k =
1, . . . , J} between them. Heretofore, these transition
paths, as well as the regimes themselves, were estimated
by purely statistical methods; see Ghil et al. (2018) and
Fig. 29a herein. Deloncle et al. (2007) and Kondrashov
et al. (2007) applied a random-forest algorithm (Breiman,
2001) to find the best real-time predictors of the next
regime in a Markov chain, conditional upon the one cur-
rently occupied. The results were quite satisfying for the
QG3 model of Marshall and Molteni (1993) and encour-

aging for an observational data set of 55 winters of North-
ern Hemisphere 700-hPa geopotential height anomalies
(Deloncle et al., 2007; Kondrashov et al., 2007, respec-
tively).

E. Chaos-to-Chaos Transition

So far, we have seen that critical transitions associated
with saddle-node bifurcations and mild generalizations
thereof are fairly well understood by now. We conclude
this section and the main part of the text with a some-
what more exotic example of chaos-to-chaos transition
for a delay differential equation (DDE) system with and
without stochastic perturbations.

We saw in Sect. II.B.1 and III.E.2that ENSO plays
a key role in the global climate on interannual-to-
interdecadal scales. Hence, a large number of relatively
simple models thereof exist to better understand its main
features. Important mechanisms involved are air–sea in-
teraction, equatorial wave dynamics, and radiative forc-
ing by the seasonal cycle (Bjerknes, 1969). In particular,
the role of the wave dynamics has been captured by in-
troducing one or two delays into the governing equations
of some of the simpler models (e.g., Ghil et al., 2008a;
Tziperman et al., 1994b, and references therein).

Chekroun et al. (2018) studied the PBA of the season-
ally forced Tziperman et al. (1994b) model both with and
without stochastic perturbations. The model has two
delays, associated with a positive and a negative feed-
back; these delays are based on the basin-crossing times
of the eastward-traveling Kelvin waves and the westward-
traveling Rossby waves. The control parameter a is the
intensity of the positive feedback and the PBA undergoes
a crisis that consists of a chaos-to-chaos transition; the
authors refer to it as a strange PBA since model behavior
is chaotic within it in the purely deterministic case.

The changes in the invariant, time-dependent measure
µt supported on this ENSO model’s PBA are illustrated
in Figs. 52a–52d, as a function of the control parame-
ter a. The PBA experiences a critical transition at a
value a∗, as illustrated in Fig. 52, where h(t) is the ther-
mocline depth anomaly from seasonal depth values at
the domain’s eastern boundary, with t in years. Here
a = (1.12 + δ))/180 and 0.015700 < δ∗ < 0.015707.

The transition in the Kolmogorov-Smirnov metric of
the invariant measure’s dependence on the parameter a,
i.e. in µt = µt(a), is quite sharp, according to Chekroun
et al. (2018, Fig. 3; not shown here). The singular sup-
port of the measure is in full agreement with rigorous
mathematical results, as well as with the numerical re-
sults (Chekroun et al., 2011; Ghil, 2017) on the random
attractor of the stochastically perturbed Lorenz (1963)
convection model.

The change in the PBA is clearly associated with the
population lying towards the ends of the elongated fila-
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(a) High-variance PBA; δ = 0 (b) δ = 0.01500

(c) δ = 0.0157
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(d) Low-variance PBA; δ = 0.015707

FIG. 52: Embedding of the invariant, time-dependent measure µt supported on the PBA associated with the highly
idealized ENSO DDE model of Tziperman et al. (1994b). The embedding is shown within the (h(t), h(t+ 1))-plane

for a = (1.12 + δ))/180, t ' 147.64 yr and, respectively, (a) δ = 0.0; and (b) δ = 0.01500; (c) δ = 0.0157; and (d)
δ = 0.015707. The red curves in the four panels represent the singular support of the measure. Reproduced with

permission from Chekroun et al. (2018).

ments apparent in Figs. 52a–52d. This population is due
to the occurrence of large warm, El Niño and cold, La Niã
events. Thus, µt(a) encripts faithfully the disappearance
of such extreme events as a↗ a∗.

Finally, perturbing the citetTziperman.ea.1994 model
by small additive noise eliminates the crisis. The expla-
nation of this numerical observation is tied to the role
played in ENSO dynamics by the interaction between
the intrinsic frequency of the coupled ocean–atmosphere
system (e.g., Neelin et al., 1998) and the seasonal forc-

ing (Ghil et al., 2008a; Jin et al., 1994, 1996; Tziperman
et al., 1994b). This interaction induces a Devil’s staircase
in model frequency, which has plausible counterparts in
observations (Ghil and Robertson, 2000).

As shown by Ghil et al. (2008, Appendix B), a Devil’s
staircase step that corresponds to a rational rotation
number can be smoothed out by a sufficiently intense
noise. In fact, the narrower a Devil’s staircase step is,
the less robust is it to noise perturbations, while the
wider ones are the most robust. The effect of noise on
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the paradigmatic example of such a staircase, the stan-
dard circle map, has been examined in greater depth by
Marangio et al. (2019).

This example is just one step on the long road of us-
ing the tools of nonautonomous and random dynamical
systems for a better understanding of major climatic phe-
nomena and processes. Note, however, that the model,
while relatively simple, is actually infinite-dimensional
because of the dependence of a DDE solution on a full
interval of initial values on the real axis.

VI. CONCLUDING REMARKS

The goal of this review was to highlight some of the
key physical and mathematical ingredients that can help
address the description, understanding and prediction of
climate variability and climate change. Complementary
aspects of observations, theory and numerics have been
taken into consideration. We have leaned heavily on dy-
namical systems theory and nonequilibrium statistical
mechanics, and have tried to present a coherent picture of
the time dependence of the climate system, its multiscale
nature, and its multistability.

We have emphasized the complex interplay between
intrinsic climate variability and the climate’s response to
perturbations. The topic is, in fact, relevant for three
problems of great scientific relevance: anthropogenic cli-
mate change, coevolution of the Earth’s climate and of
the biosphere, and the quest for life on other planets the
habitability of our own planet.

The presentation also aimed to show the extent to
which basic mathematical and physical tools can help
solve the main challenges inherent to the climate sciences.
These challenges cannot be overcome merely by increas-
ing the resolution of numerical models and including in
them more and more physical and biogeochemical pro-
cesses. In addition, a balanced interplay of observations,
modeling and theory is definitely needed to achieve the
necessary progress. In the text above, we have pointed
to several open scientific problems; see also Ghil (2019)
for a historical perspective.

This review is far from exhaustive: the authors had to
make hard and, obviously, personal choices on the topics
to be covered. We would like to briefly mention here
several additional approaches to the problems at hand
that have been developed in recent years.

• Network Theory (e.g. Barrat et al., 2008; Newman,
2010) has provided a novel viewpoint for construct-
ing a parsimonious yet efficient representation of
many complex processes taking place in the Earth
system (e.g., Donges et al., 2009; Tsonis and Roeb-
ber, 2004; Tsonis et al., 2006). Gozolchiani et al.
(2011) and Wang et al. (2013) provide examples
of use of networks for capturing specific climatic

processes, while Boers et al. (2014) an example of
applying network theory to climate prediction.

• Extreme Value Theory (EVT) (e.g., Coles, 2001;
Embrechts et al., 1999) has been used extensively in
studying the statistical properties of rare hydrom-
eteorological events, such as the occurrence of very
intense rain or of extreme temperatures (Ghil et al.,
2011; Katz et al., 2002, and references therein). Yet
this classical methodology has been almost entirely
neglected in IPCC reports dedicated to the study of
extremes, cf. IPCC (2012). Recently, though, rapid
advances in EVT theory for general observables of
chaotic deterministic dynamical systems (Holland
et al., 2012; Lucarini et al., 2016, 2014b) have led
to the derivation of indicators of weather regimes
based on extreme value statistics in the recurrence
of atmospheric fields. In addition to the mere clas-
sification of such regimes, as mentioned at the end
of Sect. V.D, this approach allows one to infer
higher or lower instability of these regimes and,
hence, their lower or higher predictability (Faranda
et al., 2017; Hochman et al., 2019).

• Large Deviation Theory (e.g., Touchette, 2009;
Varadhan, 1984) has been first used in the con-
text of geophysical fluid dynamics for studying the
self-organization and the multistability of turbulent
flows and, specifically, of jet structures (Bouchet
et al., 2014; Bouchet and Venaille, 2012); see also
Sects. V.A and V.C herein. More recently, it has
been applied successfully in studying weather and
climate extremes. First, it has helped formulate
rare events algorithms able to nudge a climate
model towards representing preferentially the class
of extreme events of interest (Ragone et al., 2018).
Second, it has provided a solid theoretical and nu-
merical basis for the study of spatially extended or
temporally persistent temperature extremes (Gálfi
et al., 2019). Large Deviation Theory has also
been recently used to study multiscale and coupled
atmosphere-ocean instabilities in a hierarchy of cli-
mate models (De Cruz et al., 2018; Vannitsem and
Lucarini, 2016).

• Detection and Attribution Studies. In a complex
system like the climate, inferring causal relation-
ships among events and phenomena is far from
obvious. Nonetheless, doing so for well-defined
weather and climate events is essential for build-
ing simplified models and, at a practical level, for
causal attribution of weather- and climate-related
events. This is quite important in the case of de-
tection and attribution studies of anthropogenic cli-
mate change, especially when aiming to go beyond
changes in mean climate properties, such as glob-
ally averaged temperatures, and on to determining
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to what extent the occurrence of an individual ex-
treme event — e.g., of a hurricane or an extended
drought — can be attributed to climate change
(Adam, 2011; Allen, 2003).

Methodologies based on the causal counterfactual
theory of Pearl (2009) are being increasingly recog-
nised as a key instrument for providing a more rig-
orous basis for detection and attribution studies
(e.g., Hannart et al., 2016a). They also seem better
suited for defining reliably the link between anthro-
pogenic climate forcing and individual events (Han-
nart and Naveau, 2018). Combining these methods
with those of data assimilation, discussed herein
in Sect. II.A, appears to be well suited to refine
the distinction between the factual and counterfac-
tual world that separates causation from the lack
thereof (e.g., Hannart et al., 2016b).

• Beyond Linear Response Theory. As shown in
Sect. IV.E, linear response theory can provide a sys-
tematic improvement upon the standard methodol-
ogy of forward integration of model ensembles with
perturbed initial states and parameters. While it
does apply to systems out of thermodynamic equi-
librium, it is still limited by its linearity to fairly
small perturbations in parameters. In Sect. IV.D,
we mentioned that one can use the Wasserstein
distance to measure arbitrary changes between
two invariant measures, whether supported on a
time-independent, classical attractor or a time-
dependent PBA. One might thus wish to apply the
PBA-based methodologies herein directly to obser-
vational data sets or to the simulations of IPCC-
class models, either instead of or in combination
with previously tested statistical methods.

In Sect. V.E, we showed that the PBA of an
intermediate, but still infinite-dimensional ENSO
model can undergo a chaos-to-chaos transition that
involves major changes in its invariant measure.
Moreover, these changes could be connected to a
physically quite significant change in model behav-
ior, namely in the number and size of extreme
events, i.e. of the largest warm and cold events.
Thus exploring similarly interesting changes in
model PBAs and in the time-dependent invariant
measures supported by them appears to be a very
promising road toward a deeper understanding of
climate variability and its interaction with both
natural and anthropogenic forcing.
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Appendix A: Acronyms

This Appendix contains two tables of the acronyms
used throughout the paper: Table III contains the scien-
tific acronyms and Table IV the institutional ones.

Acronym Meaning

AS Arakawa-Schubert (parametrization)

CNs Complex networks

DDE Delay differential equation

DNS Direct numerical simulation

EBM Energy Balance Model

ECS Equilibrium Climate Sensitivity

ENSO El-Niño-Southern Oscillation

EMS Empirical Mode Reduction

FDT Fluctuation Dissipation Theorem

GCM General Circulation Model

GCM Global Climate Model

GFD Geophysical fluid dynamics

GHGs Greenhouse Gases

GLE Generalized Langevin equation

LFV Low Frequency Variability

MJO Madden-Julian Oscillation

MZ Mori-Zwanzig

NAO North Atlantic Oscillation

NDS Nonautonomous dynamical system

NWP Numerical Weather Prediction

NSEs Navier-Stokes Equations

ODE Ordinary differential equation

PBA Pullback attractor

PDE Partial differential equation

PNA Pacific North American (pattern)

PSA Pacific South American (pattern)

QG Quasi-geostrophic (flow, model)

RDS Random dynamical system

SDE Stochastic differential equation

TCR Transient Climate Response

THC Thermohaline Circulation

TABLE III: Scientific acronyms

Acronym Meaning

AR Assessment Report

CMIP Climate Model Intercomparison Project

ECMWF European Centre for

Mid-range Weather Forecast

ENSO El-Niño-Southern Oscillation

IPCC Intergovernmental Panel on Climate Change

NCAR National Center for Atmospheric Research

NCEP National Center for Environmental Prediction

PCMDI Program for Climate Model

Diagnostics and Intercomparison

SPM Summary for Policy Makers

UNEP United Nations Environmental Programme

WCRP World Climate Research Programme

WMO World Meteorological Organization

TABLE IV: Institutional acronyms
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Theorie der Wärme geforderte Bewegung von in ruhenden
Flüssigkeiten suspendierten Teilchen,” Annalen der Physik
322 (8), 549–560; reprinted in Investigations on the Theory
of the Brownian Movement, five articles by A. Einstein, R.
Furth (ed.) and A. D. Cowper (transl.), 1956, Dover Publ.,
New York, 122 pp.

Emanuel, K A (1994), Atmospheric Convection (Oxford Uni-
versity Press on Demand).
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